scholarly journals Effect of Different Sized Multi Walled Carbon Nanotubes on the Barrier Potential and Trap Concentration of Malachite Green Dye Based Organic Device

2020 ◽  
Vol 20 (4) ◽  
pp. 16-26
Author(s):  
Sudipta Sen ◽  
N. B. Manik

AbstractPresent work shows effect of 8 nm diameter and 30 nm diameter multi walled carbon nanotubes (MWCNT) on the barrier potential and trap concentration of Malachite Green (MG) dye based organic device. MWCNTs are basically a bundle of concentric single-walled carbon nanotubes with different diameters. In this work, ITO coated glass substrate and aluminium have been used as front electrode and back electrode respectively and the spin coating method is used to prepare the MG dye based organic device. It has been observed that both barrier potential and trap concentration are in correlation. Estimation of both these parameters has been done from current-voltage characteristics of the device to estimate the trap energy and the barrier potential of the device. Device turn-on voltage or the transition voltage is also calculated by using current-voltage characteristics. In presence of 8 nm diameter MWCNT, the transition voltage is reduced from 3.9 V to 2.37 V, the barrier potential is lowered to 0.97 eV from 1.12 eV and the trap energy is lowered to 0.028 eV from 0.046 eV whereas incorporation of 30 nm diameter MWCNT shows reduction of transition voltage from 3.9 V to 2.71 V and a reduction of barrier potential and trap concentration from 1.12 eV to 1.03 eV and from 0.046 eV to 0.035 eV respectively. Presence of both 8 nm diameter and 30 nm diameter MWCNT lowers trap energy approximately to 39% and 24% respectively and lowers barrier potential approximately to 13% and 8% respectively. Estimation of barrier potential is also done by Norde method which shows lowering of the value from 0.88 eV to 0.79 eV and from 0.88 eV to 0.84 eV in presence of both 8 nm and 30 nm diameter multi walled carbon nanotubes respectively. Calculation of barrier potential from both the I-V characteristics and Norde method are in unison with each other. Indication of enhancement of charge flow in the device can be ascribed to the truncated values of barrier potential and trap energy.

2021 ◽  
Vol 69 ◽  
pp. 43-52
Author(s):  
Pallab Kumar Das ◽  
Sudipta Sen ◽  
Nabin Baran Manik

In this paper, we have estimated the series resistance (Rs) and the trap energy (Ec) of the sandwiched type Malachite Green (MG) dye-based organic device and have also observed the influence of single-walled carbon nanotubes (SWCNT) on both of these parameters. To form the organic device, we have used Indium Tin Oxide (ITO) coated glass as the front electrode and Aluminium (Al) as a back electrode by using the spin coating technique. The values of series resistance are measured from both I-V characteristics and by utilizing Cheung Function due to the non ideal behavior of organic devices. We have also extracted the values of Rs by using H (I) versus I plot and verified the values with the measured values of Rs from the Cheung function. The extracted values of series resistance using these three processes remain consistent with each other in showing that the values of series resistance have been reduced considerably in the presence of SWCNT. The trap energy has been estimated from the steady-state current-voltage characteristics. There is a significant correlation in between series resistance and the trap energy of the organic device. The presence of Single-Walled Carbon Nanotubes reduces the trap energy from 0.086 eV to 0.057 eV. Lowering of the trap energy of the metal-organic layer interface in presence of Single Walled Carbon Nanotubes attributes to the reduction of the value of the series resistance. The extracted value of Rs decreases from 0.154 MΩ to 0.0389 MΩ in presence of SWCNT. Decrease in the value of both of these parameters in the presence of SWCNT will definitely improve the charge transport mechanism of the organic device and thereby the conductivity.


Author(s):  
С.В. Васин ◽  
M.C. Ефимов ◽  
В.А. Сергеев

It is shown that aluminum / polyvinyl alcohol (PVA) with the inclusion of multi-walled carbon nanotubes (MWCNTs) / silicon planar structures demonstrate rectifying properties and their current-voltage characteristics are asymmetric and non-linear. With direct bias, the structures have a positive temperature coefficient of resistance (TCR) in the temperature range of 270-350 K, while the structures without MWCNTs exhibit negative TCR. Under reverse bias, the studied structures with MWCNTs showed TCS changing sign from negative to positive. To explain the obtained dependences, the tunneling mechanism of current transfer is considered.


2021 ◽  
Vol 19 (9) ◽  
pp. 132-141
Author(s):  
Shaymaa Hussein Nowfal ◽  
Hikmat Adnan Banimuslem ◽  
Nassar A. Al-Isawi ◽  
Hayder M.A. Ghanimi

In this work, two elements were developed. The first is Multi walled carbon nanotubes-zinc phthalocyanine (ZnPcs). In addition, there was also a development of the multi walled carbon nanotubes-aluminium phthalocyanine hybrid materials. The multi-walled carbon nanotubes were under treated with nitric combined with the sulfuric acid before being mixed with phthalocyanines to de-build the effects. Drop-casting hybrid materials to slides of the glass and interdigitating electrodes from their dimethylformamide solution have been done. The perfect hybridization owing to π-π interaction was discovered. This discovery was assisted by two elements. The first is the ultraviolet-visible absorption spectroscopy. Moreover, another element that played a vital role in this discovery is Fourier Transform Infrared Spectroscopy. The hybrid films were tested for current-voltage measurements and direct electrical conductivity. This work has also examined how temperature affects direct electrical conductivity and power generation.


2016 ◽  
Vol 18 (19) ◽  
pp. 13310-13321 ◽  
Author(s):  
M. Ghaedi ◽  
K. Dashtian ◽  
A. M. Ghaedi ◽  
N. Dehghanian

The aim of this work is the study of the predictive ability of a hybrid model of support vector regression with genetic algorithm optimization (GA–SVR) for the adsorption of malachite green (MG) onto multi-walled carbon nanotubes (MWCNTs).


2015 ◽  
Vol 206 ◽  
pp. 151-158 ◽  
Author(s):  
Hamidreza Sadegh ◽  
Ramin Shahryari-ghoshekandi ◽  
Shilpi Agarwal ◽  
Inderjeet Tyagi ◽  
M. Asif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document