scholarly journals Thermal Properties of Various Ti-Al-C Composites Prepared by Hot Shock Compaction Utilizing Combustion Synthesis/ Właściwości Termiczne Kompozytów Ti-Al-C Uzyskanych Z Wykorzystaniem Metody Udarowego Zagęszczania Na Gorąco

2014 ◽  
Vol 59 (4) ◽  
pp. 1575-1578 ◽  
Author(s):  
R. Tomoshige ◽  
H. Tanaka

Abstract Hot shock compaction method was utilized for the consolidation of MAX phase composites consisting of Ti, Al and C. This paper presents the production of dense, crack-free composites by combining the combustion synthesis with explosive detonation. Another objective is to investigate various properties of the obtained shock-compacts. The shock compacted materials were post-annealed at 1173 K for releasing the shock-induced strain. As a result, these compacts had strong interparticle bonding strength and few macro cracks. Intermetallic compounds (TiAl, Ti2Al and Ti3Al) and non-oxide ceramics (TiC and Ti4Al2C2) were detected in as-synthesized and annealed materials by X-ray diffraction experiments. Also, lamella structures of Ti4Al2C2 phase were observed by SEM. It was known that the coefficient of thermal expansion increased with increasing temperature, and decreased with increasing TiC content.

1997 ◽  
Vol 493 ◽  
Author(s):  
S. P. Alpay ◽  
A. S. Prakash ◽  
S. Aggarwal ◽  
R. Ramesh ◽  
A. L. Roytburd ◽  
...  

ABSTRACTA PbTiO3(001) film grown on MgO(001) by pulsed laser deposition is examined as an example to demonstrate the applications of the domain stability map for epitaxial perovskite films which shows regions of stable domains and fractions of domains in a polydomain structure. X-ray diffraction studies indicate that the film has a …c/a/c/a… domain structure in a temperature range of °C to 400°C with the fraction of c-domains decreasing with increasing temperature. These experimental results are in excellent agreement with theoretical predictions based on the stability map.


1991 ◽  
Vol 6 (12) ◽  
pp. 2723-2734 ◽  
Author(s):  
Gary M. Renlund ◽  
Svante Prochazka ◽  
Robert H. Doremus

Silicon oxycarbide glass is formed by the pyrolysis of silicone resins and contains only silicon, oxygen, and carbon. The glass remains amorphous in x-ray diffraction to 1400 °C and shows no features in transmission electron micrographs (TEM) after heating to this temperature. After heating at higher temperature (1500–1650 °C) silicon carbide lines develop in x-ray diffraction, and fine crystalline regions of silicon carbide and graphite are found in TEM and electron diffraction. XPS shows that silicon-oxygen bonds in the glass are similar to those in amorphous and crystalline silicates; some silicons are bonded to both oxygen and carbon. Carbon is bonded to either silicon or carbon; there are no carbon-oxygen bonds in the glass. Infrared spectra are consistent with these conclusions and show silicon-oxygen and silicon-carbon vibrations, but none from carbon-oxygen bonds. 29Si-NMR shows evidence for four different bonding groups around silicon. The silicon oxycarbide structure deduced from these results is a random network of silicon-oxygen tetrahedra, with some silicons bonded to one or two carbons substituted for oxygen; these carbons are in turn tetrahedrally bonded to other silicon atoms. There are very small regions of carbon-carbon bonds only, which are not bonded in the network. This “free” carbon colors the glass black. When the glass is heated above 1400 °C this network composite rearranges in tiny regions to graphite and silicon carbide crystals. The density, coefficient of thermal expansion, hardness, elastic modulus, index of refraction, and viscosity of the silicon oxycarbide glasses are all somewhat higher than these properties in vitreous silica, probably because the silicon-carbide bonds in the network of the oxycarbide lead to a tighter, more closely packed structure. The oxycarbide glass is highly stable to temperatures up to 1600 °C and higher, because oxygen and water diffuse slowly in it.


Author(s):  
Adolfo Quiroz-Rodríguez ◽  
Cesia Guarneros-Aguilar ◽  
Ricardo Agustin-Serrano

In this research, it is presented a detailed study of the structural and thermoelectric properties of the pyrochlore zirconium Pr2Zr2O7 compound prepared by solid-state reaction (SSR) in air at ambient pressure. The synthesized sample was characterized using powder X-ray diffraction. The thermal stability of the thermoelectric compound (TE) Pr2Zr2O7 was tested by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Scanning electron microscopy shows that the crystal size varies between 0.69 and 2.81μm. Electrical conductivity (\sigma) of the sample calcined at 1400 °C presented values increase irregularly with the increasing temperature from 0.001 to 0.018 S cm-1 as expected in a semiconductor material. The thermal conductivity is lower than 0.44 - 775 W m-1 K-1 which is quite anomalous in comparison with the thermal conductivity of other oxides.


2020 ◽  
Vol 32 (3) ◽  
pp. 501-507
Author(s):  
Krushitha Shetty ◽  
B.S. Prathibha ◽  
Dinesh Rangappa ◽  
K.S. Anantharaju ◽  
H.P. Nagaswarupa ◽  
...  

MgFe2O4 nanoferrites were synthesized by sol-gel and solution combustion synthesis (SCS) methods through green and chemical methods. Green and chemical methods for sol-gel were processed with use of lemon extract and citric acid, respectively. A green and chemical method for solution combustion synthesis was followed by using Phyllanthus acidus leaf extract and urea, respectively. The influence of synthesis approach on the behaviour of prepared nanoferrites were studied using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and UV visible spectroscopy, vast variation in particle size, crystallinity, electrochemical and photocatalytic activity of the nanoferrites synthesized by various methods were witnessed. Powder X-ray diffraction (PXRD) result of prepared nanoferrites acquired by green and chemical approaches clarified phase structure as spinel and the crystalline size found to be around 11-24 nm. The spinel surface morphology was witnessed for the synthesized nanoferrites. The tetrahedral and octahedral sites of the prepared nanoferrites were confirmed by FTIR spectra. MgFe2O4 nanoferrites synthesized by green sol-gel approach exposed superior electrochemical activity by possessing very less charge transfer resistance. The results of EIS were correlated with the photocatalytic degradation of Rose Bengal dye. Photocatalytic property of the prepared nanoferrites was examined for photodegradation of Rose Bengal dye under UV-light.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 629 ◽  
Author(s):  
Daria Lazurenko ◽  
Andreas Stark ◽  
Maksim Esikov ◽  
Jonathan Paul ◽  
Ivan Bataev ◽  
...  

In this study, new multilayer TiAl-based composites were developed and characterized. The materials were produced by spark plasma sintering (SPS) of elemental Ti and Al foils and ceramic particles (TiB2 and TiC) at 1250 °C. The matrix of the composites consisted of α2-TiAl and γ-TiAl lamellas and reinforcing ceramic layers. Formation of the α2 + γ structure, which occurred via a number of solid–liquid and solid–solid reactions and intermediate phases, was characterized by in situ synchrotron X-ray diffraction analysis. The combination of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis revealed that an interaction of TiC with Ti and Al led to the formation of a Ti2AlC Mn+1AXn (MAX) phase. No chemical reactions between TiB2 and the matrix elements were observed. The microhardness, compressive strength, and creep behavior of the composites were measured to estimate their mechanical properties. The orientation of the layers with respect to the direction of the load affected the compressive strength and creep behavior of TiC-reinforced composites. The compressive strength of samples loaded in the perpendicular direction to layers was higher; however, the creep resistance was better for composites loaded in the longitudinal direction. The microhardness of the composites correlated with the microhardness of reinforcing components.


2013 ◽  
Vol 802 ◽  
pp. 84-88
Author(s):  
Sagulthai Kahatta ◽  
Nopsiri Chaiyo ◽  
Chesta Ruttanapun ◽  
Wicharn Techitdheera ◽  
Wisanu Pecharapa ◽  
...  

The microwave-assisted solution combustion synthesis was applied to the initial synthesizing of Ca3Co2O6powder using glycine as a fuel and nitrate as an oxidant. The as-synthesized powders were calcined at 700-1,000ºC for 4h. Product characterization was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning electron microscope (SEM). The fuel-to-oxidizer molar ratio was found to affect the combustion reaction and character of the powder obtained. The phase composition of powder after calcination at various temperatures has shown that the formation of Ca3Co2O6occurs directly. The calcined powder possesses a rhombohedral crystal structure with an X-ray diffraction pattern that could be matched with the Ca3Co2O6JCPDS: 89-0629. This method is a simple way of synthesizing fine Ca3Co2O6powder with a low calcination temperature.


2001 ◽  
Vol 674 ◽  
Author(s):  
Xiang-Cheng Sun ◽  
J. A. Toledo ◽  
S. Galindo ◽  
W. S. Sun

ABSTRACTFerromagnetic properties and nanocrystallization process of soft ferromagnetic (Fe0.99Mo0.01)78Si9B13 ribbons are studied by transmission electron microscope (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MS), differential scanning calorimeters (DSC) and magnetization measurements. The Curie and crystallization temperature are determined to be TC=665K and Tx = 750K, respectively. The Tx value is in well agreement with DSC measurement results. X-ray diffraction patterns had shown a good reconfirm of two metastable phases (Fe23B6, Fe3B) were formed under in-situ nanocrystallization process. Of which these metastable phases embedded in the amorphous matrix have a significant effect on magnetic ordering. The ultimate nanocrystalline phases of α-Fe (Mo, Si) and Fe2B at optimum annealing temperature had been observed respectively. It is notable that the magnetization of the amorphous phase decreases more rapidly with increasing temperature than those of nanocrystalline ferromagnetism, suggesting the presence of the distribution of exchange interaction in the amorphous phase or high metalloid contents.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 651-653
Author(s):  
W. L. WANG ◽  
L. LI ◽  
K. J. LIAO ◽  
J. ZHANG ◽  
R. J. ZHANG ◽  
...  

The Magnetothermoelectric and thermoelectric power of nano- ZnO films was investigated. The ZnO films in this study were prepared by DC reactive sputtering using a Zn target (99.99%) containing AL of 1.5%. The films obtained were characterized by SEM, x-ray diffraction, optical and electrical measurements. It was found that the sputtering ZnO films were highly orientation growth with the c-axis perpendicular to the substrate surface. The measurements showed that there was a striking seebeck effect in the ZnO films, and their thermoelectric power was linearly increased with increasing temperature. The experimental results were also demonstrated that the thermoelectric power was degraded under the magnetic field. This finding may ascribe to the magneto resistive effect.


1995 ◽  
Vol 10 (6) ◽  
pp. 1546-1554 ◽  
Author(s):  
G.M. Chow ◽  
L.K. Kurihara ◽  
K.M. Kemner ◽  
P.E. Schoen ◽  
W.T. Elam ◽  
...  

Nanocrystalline CoxCu100−x (4 ⋚ x ⋚ 49 at. %) powders were prepared by the reduction of metal acetates in a polyol. The structure of powders was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), extended x-ray absorption fine structure (EXAFS) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, and vibrating sample magnetometry (VSM). As-synthesized powders were composites consisting of nanoscale crystallites of face-centered cubic (fcc) Cu and metastable face-centered cubic (fcc) Co. Complementary results of XRD, HRTEM, EXAFS, NMR, and VSM confirmed that there was no metastable alloying between Co and Cu. The NMR data also revealed that there was some hexagonal-closed-packed (hcp) Co in the samples. The powders were agglomerated, and consisted of aggregates of nanoscale crystallites of Co and Cu. Upon annealing, the powders with low Co contents showed an increase in both saturation magnetization and coercivity with increasing temperature. The results suggested that during preparation the nucleation of Cu occurred first, and the Cu crystallites served as nuclei for the formation of Co.


1993 ◽  
Vol 37 ◽  
pp. 479-482 ◽  
Author(s):  
Joe Wong ◽  
J. W. Elmer ◽  
P. A. Waide ◽  
E. M. Larson

The synchrotron x-ray source provides a unique opportunity to observe many “in-situ” processes. The formation of the “short-lived” intermediate species, Ta2C, during the combustion synthesis of TaC, has been observed and reported by monitoring the Bragg diffraction peaks of the reactants and products, Similarly, the synthesis of the ferroelectric material, BaTiO3, and subsequent phase transfonnation from cubic to tetragonal have also been investigated. These experiments would not have been possible without the high incident x-ray flux available at a synchrotron source.


Sign in / Sign up

Export Citation Format

Share Document