scholarly journals Effect of FSW welding parameters on the tensile strength of aluminum alloys

2019 ◽  
Vol 39 (1) ◽  
pp. 41-45
Author(s):  
Mohamed Serier ◽  
Mohamed Berrahou ◽  
Affaf Tabti ◽  
Seif-E Bendaoudi

Abstract The friction stir welding process is an innovative technique for joining metals using plasticity, without presenting the fusion. It was first applied to aluminum alloys, for example copper, steel alloys, polymers and others. In this work the effects of the rotational speed, the speed of travel and the axial force of the tool were grouped in a mathematical model to quantify their influences on the weld seam. In this context and with of the experimental tests, the desired objective through this study is to describe the tensile strength of the cord resulting from this welding operation, for the qualification of this type of parts with an optimum adapted to a given application.

2017 ◽  
Vol 37 (1) ◽  
pp. 6-21 ◽  
Author(s):  
C. Rajendrana ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractAA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2011 ◽  
Vol 299-300 ◽  
pp. 1095-1098 ◽  
Author(s):  
Lei Wang ◽  
Jian Jun Zhu ◽  
Wei Zhang ◽  
Xing Mei Feng ◽  
Zhan Ying Feng

Several rotating rates and welding speeds were chosen to joint 6063/3A21 dissimilar aluminum alloys, tensile strength of the welds were measured to analyze effect of welding parameters on weld performance. Results show that tensile strength of the weld is better than the base material. Weld tensile strength will decrease under a too high or too low welding speed while effect of rotating rate on weld strength is relatively small. The weakest position is at heat affected zone at 3A21 side after T6 post weld heat treatment.


2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Author(s):  
P. Rabe ◽  
A. Schiebahn ◽  
U. Reisgen

AbstractThe friction stir welding (FSW) process is known as a solid-state welding process, comparatively stable against external influences. Therefore, the process is commonly used with fixed welding parameters, utilizing axial force control or position control strategies. External and internal process disturbances introduced by workpiece, gap tolerance, tool wear, or machine/tool inadequacies are rarely monitored, and conclusions about the weld seam quality, based on the recorded process data, are not drawn. This paper describes an advancement, improving on research into the correlation of process force feedback events or gradual force changes and the resulting weld seam characteristics. Analyzing the correlation between examined weld sections and high-resolution rate force data, a quality monitoring system based on an analytic algorithm is described. The monitoring system is able to accurately distinguish sound welds from such with internal (void) and external (flash) defects.


Author(s):  
M.A. Unnikrishnan ◽  
J. Edwin Raja Dhas

In this paper, the Taguchi method and grey relational analysis have been used to evaluate the weldability of AZ91B Magnesium alloy by friction stir welding process. Experiments were conducted using the L9 Taguchi design considering an orthogonal array consist of 3 factors and 3 levels. The rotational speed, transverse speed and angle of tilt of the tool are selected as welding parameters. Analysis of variance (ANOVA) is used to analyze the influence of the welding parameters on the responses namely, ultimate tensile strength (UTS) and hardness. The analysis results revealed that the transverse speed is the predominant parameter affecting tensile strength, hardness and quality of the weld. Confirmation test results showed that the Taguchi method coupled with grey relational analysis is very successful in the optimization of welding parameters for maximum strength and hardness in the FSW of AZ91B Magnesium alloy.


Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


2019 ◽  
Vol 43 (2) ◽  
pp. 230-236
Author(s):  
Ashok S. Kannusamy ◽  
Ravindran Ramasamy

This paper addresses the effect of post weld heat treatment methods on the mechanical and corrosion characteristics of friction stir welded aluminum alloy AA2014-T6. Aluminum alloy AA2014 is mainly used in applications that demand high strength to weight ratios, such as aerospace, marine, and industrial applications. In this work, AA2014-T6 plates of 6 mm thick were butt welded using a tool with a square profile. Tensile strength, hardness, and corrosion characteristics were compared between the samples as welded and post weld heat treated. Welded samples that were heat treated for a shorter ageing period (8 h) showed improved tensile strength irrespective of welding process parameters, compared to as-welded samples. The samples heat treated for a longer ageing period (9 h) showed a decline in tensile strength for low tool rotation speed. Hardness increased in welded samples heat treated for 8 h. Welded samples heat treated for 9 h show high passivity in corrosion media.


2010 ◽  
Vol 636-637 ◽  
pp. 1150-1156 ◽  
Author(s):  
Rui Louro ◽  
Carlos Leitão ◽  
Helena Gouveia ◽  
Altino Loureiro ◽  
Dulce Maria Rodrigues

The task of obtaining suitable welding parameters for the friction stir welding process is often a difficult one, due to the lack of published data and the fact that the exact mechanism by which the process operates has not yet been fully determined. Therefore, suitable welding parameters often need to be obtained by using extensive, time consuming and expensive experimental methods. The work detailed in this paper pertains to the use of the Taguchi method as a mean to reduce the disadvantages of these experimental methods, more specifically, their cost. The Taguchi method accomplishes this task by substantially reducing the number of welding trials that are needed to obtain suitable welding parameters. This reduction leads to the parameters being obtained more rapidly and at a substantially smaller cost. In this paper a procedure for applying the Taguchi method to the friction stir welding process is presented as well as its application to the welding of a specific component. The method was applied to the welding of 4mm thick AA5083-H111 plates in a butt joint configuration, which constitutes one of the most common industrial welding scenarios. The purpose of the experimental tests was to maximize the welding speed whilst ensuring an acceptable welding quality. The quality of the welds was determined through visual inspection and tensile and bending tests. The application of the Taguchi method allowed, with a relatively small number of experimental welds, to provide some insight into the manner by which the parameters should be altered in order to optimize the process.


Sign in / Sign up

Export Citation Format

Share Document