scholarly journals A Review on the Performance and Comfort of Stab Protection Armor

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dereje Berihun Sitotaw ◽  
Dustin Ahrendt ◽  
Yordan Kyosev ◽  
Abera Kechi Kabish

Abstract Stab-protective clothing is the most important component of safety equipment and it helps to save the lives of its wearers; therefore, it is designed to resist knife, nail, or needle attacks, especially to the upper body. In this paper, the essential requirements for stab-resistant armor are investigated based on an in-depth review of previous research and prototype test results. The combination of protection and comfort in armor vests is a particularly challenging task. Review of the state of the art technology responsible for the manufacture of stab-resistant clothes has revealed that their design and development should encompass the elements of comfort, freedom of movement, permeability, absorption, evaporation, and weight reductions to ensure excellent ergonomics and high wear comfort. The design as well as the production, weight, thickness, material types and properties, and the arrangement of scales determine the level of protection and comfort offered by stab-resistant vests. Currently, the production of stab-proof gear-based 3D printing technology is evaluated, using lightweight materials (aramid) in the form of segmented scales inspired by nature. As the protection performance and wear comfort of stab-proof gear is enhanced, the willingness of security, control, transport, custom, and correction officers to wear them can be significantly increased in an endeavor to ensure that fatal injuries will decrease significantly.

1989 ◽  
Vol 21 (10-11) ◽  
pp. 1421-1429
Author(s):  
D. T. Redmon ◽  
W. C. Boyle ◽  
B. G. Hellstrom

The background and theory of the offgas analysis procedure used in oxygen transfer testing of diffused aeration tanks is reviewed. Correlation of this method with other applicable procedures in parallel tests is reported. State-of-the-art equipment and accessories are described. Advantages of the procedure are identified, as are precautionary considerations regarding its use. Applications considered appropriate for its employment are delineated. Experience and test results in both Sweden and the U.S.A. on a variety of aeration devices are disclosed.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


Author(s):  
D. E. Brandt

The MS7001F heavy–duty gas turbine has been designed utilizing advanced analytical methods and a substantial array of component tests. The integrity of the system required that the prototype unit, with its accessories, be rigorously tested under load. The factory load test was completed on May 18, 1988 after 387 hours and 134 start/stop cycles. The MS7001F prototype gas turbine was instrumented with more than 3000 pieces of instrumentation in order to record all critical temperatures, pressures, flows, strains, displacements, and other pertinent data. The load device was a modified MS7001E compressor, which also supplied the means by which the MS7001F prototype compressor’s pressure ratio was increased to provide for surge margin determination. Inlet throttling of the MS7001F compressor allowed for full firing temperature operation, at reduced load. The results of this factory prototype load test are reported in the paper as are observations made during post test teardown.


Author(s):  
Agnieszka Greszta ◽  
Sylwia Krzemińska ◽  
Grażyna Bartkowiak ◽  
Anna Dąbrowska

Abstract Aerogels are ultra-light solids with extremely low thermal conductivity (even lower than air), thanks to which they have a huge potential in a wide range of applications. The purpose of this publication is to present the state-of-the art knowledge of the possibility of using aerogels to increase the thermal insulation properties of clothing materials intended for use in both cold and hot environments. Various methods of aerogels application to textile materials (non-woven, woven and knitted fabrics) are discussed, indicating their advantages and limitations. Numerous research studies confirm that aerogels significantly improve the thermal insulation properties of materials, but due to their delicate and brittle structure and their tendency to dusting, their application still poses considerable problems.


Author(s):  
Priyanshu Agarwal ◽  
Ashish D. Deshpande

The past few decades have witnessed a rapid explosion in research surrounding robotic exoskeletons due to their promising applications in medicine and human performance augmentation. Several advances in technology have led to the development of more energy efficient and viable prototypes of these devices. However, despite this rapid advancement in exoskeleton technology, most of the developed devices are limited to laboratory testing and a very few of them are commercially available for human use. This chapter discusses the advances in various constituting technologies including actuation, sensing, materials, and controls that made exoskeleton research feasible. Also presented are case studies on two state-of-the-art robotic exoskeletons, Harmony and Maestro, developed for rehabilitation of the upper body. The chapter concludes with a discussion on the ongoing challenges in exoskeleton design and ethical, social, and legal considerations related to the use of these devices and the future of exoskeletons.


1976 ◽  
Vol 21 (3) ◽  
pp. 2-12
Author(s):  
Jan M. Drees

This paper presents an overview of the correlation of helicopter rotor performance and loads data from various tests and analyses. Information is included from U.S. Army‐sponsored tests conducted by Bell Helicopter Company for free‐flight full‐scale tests in the NASA‐Ames 40 × 80 wind tunnel, one‐fifth scale tests in the NASA‐Langley Transonic Dynamics Tunnel, and small‐scale tests of a rotor in air. These test data are compared with each other, where appropriate, and with calculated results. Typical examples illustrate the state of the art for correlation and indicate anomalies encountered. It is concluded that a procedure using theoretical analyses to aid in interpretation and evaluation of test results is essential to developing a science of correlation.


Author(s):  
Christian Kunkel ◽  
Jan Werner ◽  
Daniel Franke ◽  
Heinz-Peter Schiffer ◽  
Fabian Wartzek ◽  
...  

Abstract With the well-known Transonic Compressor Darmstadt (TCD) in operation since 1994, profound knowledge in designing and operating a sophisticated test-rig is available at the Institute of Gas Turbines and Aerospace Propulsion of TU Darmstadt. During this period, TCD has been subject to a vast number of redesigns within different measurement campaigns (see [1], [2], [3], [4], [5], [6], [7], [8]). To expand the capabilities and ensure a sustainable process of compressor research, a new test facility was designed and built by the institute. The new test rig Transonic Compressor Darmstadt 2 (TCD2) features increased power for higher pressure ratios and higher mass-flow, a state of the art control system, increased flexibility towards different compressor geometries and modern data acquisition hardware and software. Following the successful commissioning of the test-rig in March 2018, a first measurement campaign has been conducted. Early test results regarding aerodynamic performance and aeroelastic effects of the test compressor are presented together with a detailed overview of test-rig infrastructure and control systems as well as the test compressor and the measurement hardware.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3621 ◽  
Author(s):  
Augustyn Wójcik ◽  
Robert Łukaszewski ◽  
Ryszard Kowalik ◽  
Wiesław Winiecki

Nonintrusive appliance load monitoring (NIALM) allows disaggregation of total electricity consumption into particular appliances in domestic or industrial environments. NIALM systems operation is based on processing of electrical signals acquired at one point of a monitored area. The main objective of this paper was to present the state-of-the-art in NIALM technologies for the smart home. This paper focuses on sensors and measurement methods. Different intelligent algorithms for processing signals have been presented. Identification accuracy for an actual set of appliances has been compared. This article depicts the architecture of a unique NIALM laboratory, presented in detail. Results of developed NIALM methods exploiting different measurement data are discussed and compared to known methods. New directions of NIALM research are proposed.


Sign in / Sign up

Export Citation Format

Share Document