scholarly journals Automatic Identification Of Wrist Position In A Virtual Environment For Garment Design

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yu Chen ◽  
Qinhua Hou ◽  
Yan Hong ◽  
Weihong Gao

Abstract With the development of virtual reality, computer-aided design has shown its strength in the garment product development process. Wrist position corresponds to the styloid process of the ulna (SPU). Due the problem that the SPU position is usually not the finest position of the forearm, the wrist position identification in the 3D clothing design is quite important. This paper proposes a method that uses a fixed-step search algorithm based on existing proportion methods to determine the position of the SPU. The accuracy and efficiency of the proposed method has been validated using 100 samples by comparison with the existing methods. It can be fully applied to a virtual 3D-to-2D garment prototyping process and ensure the automation of this process.

Author(s):  
Aditya Balu ◽  
Sambit Ghadai ◽  
Gavin Young ◽  
Soumik Sarkar ◽  
Adarsh Krishnamurthy

The widespread adoption of computer-aided design (CAD) and manufacturing (CAM) tools has resulted in the acceleration of the product development process, reducing the time taken to design a product [46]. However, the product development process, for the most part, is still decentralized with the design and manufacturing reviews being performed independently, leading to differences between as-designed and as-manufactured component. A successful product needs to meet its specifications, while also being manufacturable. In general, the design engineer ensures that the product is able to function according to the specified requirements, while the manufacturing engineer gives feedback to the design engineer about its manufacturability. This iterative process is often time consuming, leading to longer product development times and higher costs. Recent researches in integrating design and manufacturing [24, 28, 46] have tried to reduce these differences and making the product development process easier and accessible to designers, who may not be manufacturing experts. In addition, there have been different efforts to enable a collaborative product development process and reduce the number of design iterations [8, 10, 41]. However, with the increase in complexity of designs, integrating the manufacturability analysis within the design environment provides an ideal solution to improve the product design process.


Author(s):  
Maurizio Muzzupappa ◽  
Loris Barbieri ◽  
Fabio Bruno ◽  
Umberto Cugini

Topological optimization (TO) tools are today widely employed in several engineering fields (e.g., construction, aeronautics, aerospace, and automotive). The diffusion of these tools is due to their capacity to improve mechanical properties of products through a global optimization of the product in terms of weight, stiffness, strength, and cost. On the other hand, the adoption of TO tools still requires a sizeable organizational effort because, at present, these tools are mostly stand-alone and are not well integrated into the product development process (PDP). This paper presents an innovative methodology that supports designers and analysts in formalizing and transmitting design choices taken during project activities and in making the integration of TO tools in the PDP more efficient. The methodology clearly defines the roles, the activities, the data to exchange, and the software tools to be used in the process. Some custom computer-aided design automation tools have been implemented to improve the efficiency of the methodology. Moreover, this paper defines an original procedure to support the interpretation of the TO results.


Author(s):  
Sebastian Pena Serna ◽  
Andre Stork ◽  
Dieter W. Fellner

The engineering design is a systematic approach implemented in the product development process, which is composed of several phases and supported by different tools. Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) tools are particularly dedicated to the embodiment phase and these enable engineers to design and analyze a potential solution. Nonetheless, the lack of integration between CAD and CAE restricts the exploration of design variations. Hence, we aim at incorporating functionalities of a CAD system within a CAE environment, by means of building a high level representation of the mesh and allowing the engineer to handle and manipulate semantic features, avoiding the direct manipulation of single elements. Thus, the engineer will be able to perform extruding, rounding or dragging operations regardless of geometrical and topological limitations. We present in this paper, the intelligence that a simulating mesh needs to support, in order to enable such operations.


Author(s):  
Eric N. Wiebe

Many manufacturing industries, especially small to medium-sized companies, are in the process of exploring the move from two-dimensional computer-aided design (CAD) technologies to three-dimensional CAD tools interfaced with product data management (PDM) systems. For many companies, their current organizational structure is not well suited to fully leverage the capabilities of new CAD/PDM technology. This paper explores the author's experiences working in the residential furniture industry, helping companies successfully integrate CAD/PDM systems into their engineering and manufacturing operations. Of particular focus was the role user-centered, site-based techniques played in helping one company with this integration process. Both current and future scenarios based on an in-depth analysis of the product developed process were generated and used to help guide an implementation plan for a new CAD/PDM system.


Author(s):  
Tapio Korpela ◽  
Ari Heikkinen ◽  
Tatu Leinonen

Abstract Laboratory of Machine Design at the University of Oulu has modelled the production information for a gear transmission unit in co-operation with a Finnish gear manufacturer, Santasalo Ltd. The basic idea was to integrate computer aided design into modern FMS-based production activities. The main goal in this project is to capture the whole gear box development process from customer requirements to manufacturable assembly and detail information in OOA models.


Author(s):  
Peng Li ◽  
Peter R. M. Jones

Abstract There is an increasing need for computerized surface model of the human body in human growth, garment design and ergonomics. However, there is a shortage of three-dimensional (3-D) models of the human body in practical applications. This paper presents a new approach for constructing a 3-D surface model of the human torso using anthropometry. The torso is created by from a reference body of average shape which is represented by a family of cross-sectional curves. The shape and size of the reference body can be modified according to anthropometric data. This approach has been implemented on a personal computer. The resulting 3-D model is a parametric surface based on non-uniform B-splines and can easily be exported to other computer aided design applications.


Author(s):  
J C Rico ◽  
S Mateos ◽  
E Cuesta ◽  
C M Suárez

This paper presents a program for the automatic design of special tools developed under a CAD/CAM (computer aided design/manufacture) system. In particular, the special tools made with standard components have been considered. Since the design of these types of tools was essentially related to the selection of their components, this paper deals with this aspect, insisting upon the selection of those components directly related to the removal of material: the toolholders or cartridges and the inserts. To select these components it is necessary to take into account not only geometrical or technological rules but also economical ones, owing to the high amount of possible components they can select. Consideration of economical aspects required the formulation of the cost equation associated with the use of these types of tools, characterized because their cutting edges coincide with different cutting velocities. Likewise, consideration of economical aspects allows the selection of the optimum cutting conditions and the cutting components to take place at the same time. Some of the geometrical and technological parameters related to the selection of cutting components are automatically identified by the system through an automatic identification of the workpiece profile.


2017 ◽  
Vol 37 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Andre Diogo Moscheto ◽  
Carlos Cziulik ◽  
Simão Marcon Junior ◽  
Marcos Sulevis

Purpose The purpose of this paper is to provide a new approach involving guidelines and supporting techniques that guarantees all needed space for appropriate product maintenance. Design/methodology/approach The approach is based on two major areas: field survey to understand how maintainability parameter is applied and converge theory and practice into a systematic space claim method using computer-aided design (CAD) systems to assure proper maintenance procedures at design stages. Findings Case studies from a truck industry conducted following the proposed approach contrast the savings that can be achieved by using a proper space claim for aftermarket needs against an unsuitable level of participation by maintenance personnel during the design development. Research limitations/implications This approach is highly dependent on maintenance experts with suitable skills on CAD systems. Practical implications Products developed according to the approach envisaged can result in following aspects: lower repair time, better maintenance procedures on key components, easier preventive maintenance, less need for special tools, more ergonomic design, better communication between design and service engineers, simplicity and less complex training. Social implications Further research on maintainability will provide new information on how to apply this parameter on product development process (PDP), so design teams can better understand and address this relevant issue. The proposed method has been introduced in the PDP of a major multinational automotive company. Originality/value A new process is presented, considering the protection of needed spaces for maintenance procedures throughout the PDP, diverging to other studies that only propose analysis addressing maintainability at singular point in time during the product development. In just one case study presented, savings of US$1.3m were achieved by applying this space claim approach.


2019 ◽  
Author(s):  
Frederico Chaves Carvalho ◽  
Paulo Eduardo Ambrósio

The use of whole-cell models in research has the potential to be a powerful tool for scientific discovery, allowing researchers to test hypotheses faster than using in-vitro or in vivo methods. Such models can be considered the equivalent of Computer Aided Design for Biology. However, given their complexity, it is still difficult to employ them as an instrument in investigations. In order to solve this problem, we are developing a framework with the purpose to guide and help scientists through the process of creating whole-cell models faster, enabling them to use these tools as part of their research. This paper brings details of the early stages of the framework’s development process


Author(s):  
Folasayo Enoch Olalere

This chapter practically investigates how rapid prototyping technology can be effectively adopted to enhance ceramics production. The researcher used an experimental approach that analysed the conventional methods used in ceramics production and then introduced computer-aided design tools (CAD) and rapid prototyping technology into the development process. After that, four ceramic products were developed to test the viability of the rapid production process. Finally, the process was evaluated and compared to the conventional methods. The findings revealed that the introduction of CAD and rapid prototyping technology into the development process reduces the development time and also helps to ensure the accuracy of the prototypes produced. Besides, visualising and validating the design digitally (CAD models) also helps to identify possible faults at the early stage of the development process. Therefore, the ideas explored in this chapter will give insight to ceramics designers and artisans on how they can effectively eliminate bottlenecks in the production process.


Sign in / Sign up

Export Citation Format

Share Document