scholarly journals Prevalence of Coxiella Burnetii in Dairy Herds - Diagnostic Methods and Risk to Humans - A Review

2014 ◽  
Vol 58 (3) ◽  
pp. 337-340 ◽  
Author(s):  
Monika Szymańska-Czerwińska ◽  
Krzysztof Niemczuk ◽  
Agata Mitura

Abstract Q fever is a zoonotic disease caused by Coxiella burnetii. The main source of infection are ruminants (cattle, sheep, and goats). C. burnetii is excreted via birth products, vaginal mucus, milk, and faeces. Raw milk is considered useful for epidemiological examinations of animals and evaluation of infection dynamics at the herd level. This article summarises data on prevalence studies on C. burnetii in bulk-tank milk in different European countries with the means of serological tests and PCR. It also summarises the results of studies to evaluate the actual risk of disease transmission to humans through consumption of raw milk. Moreover, the available diagnostic tools for detection C. burnetii infection are presented.

2020 ◽  
pp. 43-48

Q fever is an emerging infectious disease in Europe. Q fever is a zoonosis and infected animals are the main source of infection. Ticks may act as a vector and transmit the pathogen to animals and humans. Q fever has non-specific symptoms and is difficult to diagnose. Results of serological tests are positive many days after manifestation of symptoms. PCR method might be useful in the diagnostic process.


2020 ◽  
Vol 8 (8) ◽  
pp. 1235 ◽  
Author(s):  
Mareike Stellfeld ◽  
Claudia Gerlach ◽  
Ina-Gabriele Richter ◽  
Peter Miethe ◽  
Dominika Fahlbusch ◽  
...  

Coxiella burnetii is the causative agent of Q fever, a zoonosis infecting domestic ruminants and humans. Currently used routine diagnostic tools offer limited sensitivity and specificity and symptomless infected animals may be missed. Therefore, diagnostic tools of higher sensitivity and specificity must be developed. For this purpose, the C. burnetii outer membrane protein Com1 was cloned and expressed in Escherichia coli. The His-tagged recombinant protein was purified and used in an indirect enzyme-linked immunosorbent assay (ELISA). Assay performance was tested with more than 400 positive and negative sera from sheep, goats and cattle from 36 locations. Calculation of sensitivity and specificity was undertaken using receiver operating characteristic (ROC) curves. The sensitivities and specificities for sheep were 85% and 68% (optical density at 450nm, OD450 cut-off value 0.32), for goats 94% and 77% (OD450 cut-off value 0.23) and for cattle 71% and 70% (OD450 cut-off value 0.18), respectively. These results correspond to excellent, outstanding and acceptable discrimination of positive and negative sera. In summary, recombinant Com1 can provide a basis for more sensitive and specific diagnostic tools in veterinary medicine.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Nataša Knap ◽  
Diana Žele ◽  
Urška Glinšek Biškup ◽  
Tatjana Avšič-Županc ◽  
Gorazd Vengušt

Abstract Background The obligate intracellular bacterium Coxiella burnetii causes globally distributed zoonotic Q fever. Ruminant livestock are common reservoirs of C. burnetii. Coxiella burnetii are shed in large numbers in the waste of infected animals and are transmitted by inhalation of contaminated aerosols. This study was conducted to evaluate the prevalence of C. burnetii infection in domestic animals and ticks in areas of Slovenia associated with a history of Q fever outbreaks. Results A total of 701 ticks were collected and identified from vegetation, domestic animals and wild animals. C. burnetii DNA was detected in 17 out of 701 (2.4%) ticks. No C. burnetii DNA was found in male ticks. Ticks that tested positive in the PCR-based assay were most commonly sampled from wild deer (5.09%), followed by ticks collected from domestic animals (1.16%) and ticks collected by flagging vegetation (0.79%). Additionally, 150 animal blood samples were investigated for the presence of C. burnetii-specific antibodies and pathogen DNA. The presence of pathogen DNA was confirmed in 14 out of 150 (9.3%) blood samples, while specific antibodies were detected in sera from 60 out of 150 (40.4%) animals. Conclusions Our results indicate that ticks, although not the primary source of the bacteria, are infected with C. burnetii and may represent a potential source of infection for humans and animals. Ticks collected from animals were most likely found to harbor C. burnetii DNA, and the infection was not lost during molting. The persistence and distribution of pathogens in cattle and sheep indicates that C. burnetii is constantly present in Slovenia.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ashraf Mohabati Mobarez ◽  
Ehsan Mostafavi ◽  
Mohammad Khalili ◽  
Saber Esmaeili

Coxiella burnetii is the causative agent of Q fever in humans and animals. This study aimed to determine the frequency of C. burnetii in milk samples of dairy animals (goats, sheep, and cattle) in some selected regions in Iran, where there is no information about prevalence of C. burnetii. In this study, 162 individual milk samples were collected from 43 farms in three provinces (Tehran, Hamadan, and Mazandaran). Real-time PCR was used for the detection of IS1111a element of C. burnetii. In total, 23 of 162 samples (14.2%, 95% confidence interval (CI): 9.65–20.2%) were positive for C. burnetii by real-time PCR. C. burnetii was detected in 10.17% (95% CI: 4.74–20.46) of goat milk samples. In sheep milk samples, 18.6% (95% CI: 9.74–32.62) were positive, and C. burnetii was detected in 15% (95% CI: 8.1–26.11) of cattle milk samples. Molecular evidence of the presence of C. burnetii was seen in milk samples of dairy animals in all the studied regions. These findings demonstrated that C. burnetii infection, especially in raw milk samples, deserves more attention from the health care system and veterinary organization in Iran.


2022 ◽  
Vol 12 ◽  
Author(s):  
Marcel Wittwer ◽  
Philipp Hammer ◽  
Martin Runge ◽  
Peter Valentin-Weigand ◽  
Heinrich Neubauer ◽  
...  

The Gram-negative, obligate intracellular bacterium Coxiella burnetii is the causative organism of the zoonosis Q fever and is known for its resistance toward various intra- and extracellular stressors. Infected ruminants such as cattle, sheep, and goats can shed the pathogen in their milk. Pasteurization of raw milk was introduced for the inactivation of C. burnetii and other milk-borne pathogens. Legal regulations for the pasteurization of milk are mostly based on recommendations of the Codex Alimentarius. As described there, C. burnetii is considered as the most heat-resistant non-spore-forming bacterial pathogen in milk and has to be reduced by at least 5 log10-steps during the pasteurization process. However, the corresponding inactivation data for C. burnetii originate from experiments performed more than 60 years ago. Recent scientific findings and the technological progress of modern pasteurization equipment indicate that C. burnetii is potentially more effectively inactivated during pasteurization than demanded in the Codex Alimentarius. In the present study, ultra-high heat-treated milk was inoculated with different C. burnetii field isolates and subsequently heat-treated in a pilot-plant pasteurizer. Kinetic inactivation data in terms of D- and z-values were determined and used for the calculation of heat-dependent log reduction. With regard to the mandatory 5 log10-step reduction of the pathogen, the efficacy of the established heat treatment regime was confirmed, and, in addition, a reduction of the pasteurization temperature seems feasible.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sophia Körner ◽  
Gustavo R. Makert ◽  
Sebastian Ulbert ◽  
Martin Pfeffer ◽  
Katja Mertens-Scholz

The zoonosis Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. Besides the main transmission route via inhalation of contaminated aerosols, ticks are discussed as vectors since the first isolation of the pathogen from a Dermacentor andersonii tick. The rare detection of C. burnetii in ticks and the difficult differentiation of C. burnetii from Coxiella-like endosymbionts (CLEs) are questioning the relevance of ticks in the epidemiology of Q fever. In this review, literature databases were systematically searched for recent prevalence studies concerning C. burnetii in ticks in Europe and experimental studies evaluating the vector competence of tick species. A total of 72 prevalence studies were included and evaluated regarding DNA detection methods and collection methods, country, and tested tick species. Specimens of more than 25 different tick species were collected in 23 European countries. Overall, an average prevalence of 4.8% was determined. However, in half of the studies, no Coxiella-DNA was detected. In Southern European countries, a significantly higher prevalence was observed, possibly related to the abundance of different tick species here, namely Hyalomma spp. and Rhipicephalus spp. In comparison, a similar proportion of studies used ticks sampled by flagging and dragging or tick collection from animals, under 30% of the total tick samples derived from the latter. There was no significant difference in the various target genes used for the molecular test. In most of the studies, no distinction was made between C. burnetii and CLEs. The application of specific detection methods and the confirmation of positive results are crucial to determine the role of ticks in Q fever transmission. Only two studies were available, which assessed the vector competence of ticks for C. burnetii in the last 20 years, demonstrating the need for further research.


2017 ◽  
Vol 145 (15) ◽  
pp. 3131-3142 ◽  
Author(s):  
K. GACHE ◽  
E. ROUSSET ◽  
J. B. PERRIN ◽  
R. DE CREMOUX ◽  
S. HOSTEING ◽  
...  

SUMMARYA study was carried out, from 2012 to 2015, in 10 French départements to estimate the serological prevalence of Q fever and the frequency of abortive episodes potentially related to Coxiella burnetii in a large sample of cattle, sheep and goat herds. The serological survey covered 731 cattle, 522 sheep and 349 goat herds, randomly sampled. The frequency of abortive episodes potentially related to C. burnetii was estimated by investigating series of abortions in 2695 cattle, 658 sheep and 105 goat herds using quantitative polymerase chain reaction analyses and complementary serological results when needed. The average between-herd seroprevalence was significantly lower for cattle (36·0%) than for sheep (55·7%) and goats (61·0%) and significantly higher for dairy herds (64·9% for cattle and 75·6% for sheep) than for meat herds (18·9% for cattle and 39·8% for sheep). Within-herd seroprevalence was also significantly higher for goats (41·5%) than for cattle (22·2%) and sheep (25·7%). During the study period, we estimated that 2·7% (n = 90), 6·2% (n = 48) and 16·7% (n = 19) of the abortive episodes investigated could be ‘potentially related to C. burnetii’in cattle, sheep and goat herds, respectively. Overall, strong variability was observed between départements and species, suggesting that risk factors such as herd density and farming practices play a role in disease transmission and maintenance.


Biosensors ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 125
Author(s):  
Byungjun Park ◽  
Bonhan Koo ◽  
Jisub Kim ◽  
Kiri Lee ◽  
Hyeonjin Bang ◽  
...  

Given the fatal health conditions caused by emerging infectious pathogens, such as severe acute respiratory syndrome coronavirus 2, their rapid diagnosis is required for preventing secondary infections and guiding correct treatments. Although various molecular diagnostic methods based on nucleic acid amplification have been suggested as gold standards for identifying different species, these methods are not suitable for the rapid diagnosis of pathogens owing to their long result acquisition times and complexity. In this study, we developed a rapid bio-optical sensor that uses a ball-lensed optical fiber (BLOF) probe and an automatic analysis platform to precisely diagnose infectious pathogens. The BLOF probe is easy to align and has a high optical sensing sensitivity (1.5-fold) and a large detection range (1.2-fold) for an automatic optical sensing system. Automatic signal processing of up to 250 copies/reaction of DNA of Q-fever-causing Coxiella burnetii was achieved within 8 min. The clinical utility of this system was demonstrated with 18 clinical specimens (9 Q-fever and 9 other febrile disease samples) by measuring the resonant wavelength shift of positive or negative samples for Coxiella burnetii DNA. The results from the system revealed the stable and automatic optical signal measurement of DNA with 100% accuracy. We envision that this BLOF probe-based sensor would be a practical tool for the rapid, simple, and sensitive diagnosis of emerging infectious pathogens.


2005 ◽  
Vol 59 (5-6) ◽  
pp. 507-519
Author(s):  
Milijan Jovanovic ◽  
Milijana Knezevic

Para tuberculosis or Johne's Disease, is a disease of the digestive tract of animals caused by Mycobacterium avium subspecies Para tuberculosis (M. a. Para tuberculosis). Para tuberculosis has been registered in many countries and it today presents one of the most widely-spread bacterial diseases in ruminants that causes severe economic damages. In our country, Para tuberculosis has not been studied extensively. The disease was registered for the first time in Serbia in 1995 in an isolated herd of sheep of the II-de-France breed, and serologically positive cattle were determined in 2001. Infection with M.a. Para tuberculosis occurs mostly in young animals which are the most sensitive to infection. The main source of infection is the feces of diseased animals. Furthermore, colostrums and milk of diseased animals can contain micro bacteria, and there is a possibility also of intra-uterine infection. A long period of incubation, a chronic course, and not always clear clinical picture render diagnosis of Para tuberculosis very complex, in spite of the existence of numerous diagnostic methods. There are a number of serological tests with which it is possible to detect antibodies against M.a. Para tuberculosis in infected animals. The most frequently used are complement binding reaction (CBR), the agar gel immunodiffusion test (AGID), and the immunioenzyme test (ELISA). The isolation of causes or parts of their genome, present important methods in the diagnosis of Para tuberculosis. Pieces of tissue obtained through autopsies or biopsies, feces or milk samples, can serve as material for isolation. A diagnosis of Para tuberculosis for dead or sacrificed animals is made on the grounds of path anatomical or path histological findings. Para tuberculosis of ruminants has certain similarities with Crohn's Disease in humans, from the clinical, morphological, and etiological aspects.


Sign in / Sign up

Export Citation Format

Share Document