scholarly journals Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle

2020 ◽  
Vol 8 (8) ◽  
pp. 1235 ◽  
Author(s):  
Mareike Stellfeld ◽  
Claudia Gerlach ◽  
Ina-Gabriele Richter ◽  
Peter Miethe ◽  
Dominika Fahlbusch ◽  
...  

Coxiella burnetii is the causative agent of Q fever, a zoonosis infecting domestic ruminants and humans. Currently used routine diagnostic tools offer limited sensitivity and specificity and symptomless infected animals may be missed. Therefore, diagnostic tools of higher sensitivity and specificity must be developed. For this purpose, the C. burnetii outer membrane protein Com1 was cloned and expressed in Escherichia coli. The His-tagged recombinant protein was purified and used in an indirect enzyme-linked immunosorbent assay (ELISA). Assay performance was tested with more than 400 positive and negative sera from sheep, goats and cattle from 36 locations. Calculation of sensitivity and specificity was undertaken using receiver operating characteristic (ROC) curves. The sensitivities and specificities for sheep were 85% and 68% (optical density at 450nm, OD450 cut-off value 0.32), for goats 94% and 77% (OD450 cut-off value 0.23) and for cattle 71% and 70% (OD450 cut-off value 0.18), respectively. These results correspond to excellent, outstanding and acceptable discrimination of positive and negative sera. In summary, recombinant Com1 can provide a basis for more sensitive and specific diagnostic tools in veterinary medicine.

Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1075
Author(s):  
Salvatore Ledda ◽  
Cinzia Santucciu ◽  
Valentina Chisu ◽  
Giovanna Masala

Q fever is a zoonosis caused by Coxiella burnetii, a Gram-negative pathogen with a complex life cycle and a high impact on public and animal health all over the world. The symptoms are indistinguishable from those belonging to other diseases, and the disease could be symptomless. For these reasons, reliable laboratory tests are essential for an accurate diagnosis. The aim of this study was to validate a novel enzyme-linked immunosorbent assay (ELISA) test, named the Chorus Q Fever Phase II IgG and IgM Kit (DIESSE, Diagnostica Senese S.p.A), which is performed by an instrument named Chorus, a new device in medical diagnostics. This diagnostic test is employed for the detection of antibodies against C. burnetii Phase II antigens in acute disease. Our validation protocol was performed according to the Italian Accreditation Body (ACCREDIA) (Regulation UNI CEI EN ISO/IEC 17025:2018 and 17043:2010), OIE (World Organization for Animal Health), and Statement for Reporting Studies of Diagnostic Accuracy (STARD). Operator performance was evaluated along with the analytical specificity and sensitivity (ASp and ASe) and diagnostic accuracy of the kit, with parameters such as diagnostic specificity and sensitivity (DSp and DSe) and positive and negative predictive values (PPV and NPV), in addition to the repeatability. According to the evaluated parameters, the diagnostic ELISA test was shown to be suitable for validation and commercialization as a screening method in human sera and a valid support for clinical diagnostics.


Author(s):  
Shuaibu Gidado Adamu ◽  
Junaidu Kabir ◽  
Jarlath Udo Umoh ◽  
Mashood Abiola Raji

Abstract A cross-sectional study was carried out to determine the seroprevalence and risk factors of Q fever in sheep in the northern part of Kaduna State, Nigeria. This study aimed to determine Coxiella burnetii infection and its risk factors in sheep in Kaduna State. A total of 400 blood samples consisting of 259 samples from females and 141 from males were aseptically collected from the jugular vein of sheep from flocks in Kaduna State. The sera obtained were screened for Q fever using an indirect enzyme-linked immunosorbent assay (iELISA). The obtained data were analysed to determine whether there is a relationship between sex, age, and the animals tested. The analysis revealed that 8.0% of the sera was seropositive by iELISA. There was no significant difference in Q fever seropositivity in the study area according to the sex of sheep (P > 0.05). There was a statistically significant difference (P < 0.05) in Q fever seropositivity according to the age of sheep. This study indicated a high seroprevalence of Q fever mainly among female animals and older sheep. Further studies are required to determine the epizootiology of Q fever in the study area more precisely.


1994 ◽  
Vol 5 (3) ◽  
pp. 113-118 ◽  
Author(s):  
Monique Goyette ◽  
André Poirier ◽  
Jean Bouchard ◽  
Eric Morrier

Q fever, a zoonosis acquired by inhalation of the rickettsiaCoxiella burnetii, is rarely diagnosed in Canada. The world incidence has been increasing since 1960, because of progressive dissemination of this microorganism in animal populations, particularly domestic ruminants. Some recent outbreaks were caused by cats. Of 14 cases reported in Quebec between 1989 and the beginning of 1993, nine occurred successively in an 18-month period in the rural region surrounding Trois-Rivières, after contact with livestock or cats. These cases are reported here, with the results of serological screening of the workers of an abattoir where one of the cases worked. Five additional cases reported in Quebec during the same period are briefly reviewed.


Author(s):  
Ayse Kilic ◽  
Hakan Kalender

Q fever is a zoonotic disease that occurs worldwide and is caused by the obligate intracellular bacterium Coxiella burnetii. Infected animals are usually asymptomatic, but infection can cause abortion and stillbirth in ruminants. The main purpose of this study was to evaluate prevalance of Coxiella burnetii infection in aborted and nonaborted sheep serum samples in Eastern Anatolia region by using enzyme-linked immunosorbent assay (ELISA). The determine of prevalance in sheep flocks from four provinces (Elazig, Malatya, Tunceli, Bitlis) and tested for anti-C.burnetii antibody detection, by means of Chekit Q fever Elisa kit. 350 serum samples obtained from flocks belonging aborted sheep showed that a total of 56 (16%) were detected seropositivity, whereas 171 serum samples obtained from nonaborted sheep flocks in 13 of the 171 (7.60%) for C.burnetii in seropositivity were observed. Coxiellosis should be considered an important cause of sheep with abortion history and nonaborted in Elazig and neighboring provinces.


Author(s):  
Pilar Foronda ◽  
Josué Plata-Luis ◽  
Borja Del Castillo-Figueruelo ◽  
Ángela Fernández-Álvarez ◽  
Aarón Martín-Alonso ◽  
...  

Coxiella burnetii and Toxoplasma gondii are intracellular parasites that cause important reproductive disorders in animals and humans worldwide, resulting in high economic losses. The aim of the present study was to analyse the possible role of peridomestic small mammals in the maintenance and transmission of C. burnetii and T. gondii in the north-western African archipelagos of the Canary Islands and Cape Verde, where these species are commonly found affecting humans and farm animals. Between 2009 and 2013, 108 black rats (Rattus rattus) and 77 mice (Mus musculus) were analysed for the presence of Coxiella and Toxoplasma antibodies by enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence (IFA), respectively. Our results showed a wide distribution of C. burnetii and T. gondii, except for T. gondii in Cape Verde, in both rodent species. The overall seroprevalence of C. burnetii antibodies was 12.4%; 21.1% for Cape Verde and 10.2% for the Canary Islands. With respect to T. gondii, seropositive rodents were only observed in the Canary Islands, with an overall seroprevalence of 15%. Considering the fact that both pathogens can infect a large range of hosts, including livestock and humans, the results are of public health and veterinary importance and could be used by governmental entities to manage risk factors and to prevent future cases of Q fever and toxoplasmosis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250116
Author(s):  
Ashraf Mohabati Mobarez ◽  
Mohammad Khalili ◽  
Ehsan Mostafavi ◽  
Saber Esmaeili

Background Coxiella burnetii is the causative agent of Q fever which is a highly infectious zoonotic disease. C. burnetii has become one of the most important causes of abortion in livestock, which can lead to widespread abortions in these animals. There are very limited studies on the prevalence of C. burnetii infection in cases of animal abortion in Iran. The aim of this study was to investigate the occurrence of C. burnetii in ruminant abortion samples in Iran. Methods Abortion samples from cattle, sheep and goats were collected from different parts of Iran and were tested using Real-time PCR targeting the IS1111 element of C. burnetii. Results In this study, 36 samples (24.7%) of the 146 collected samples were positive for C. burnetii. The prevalence of C. burnetii was 21.3% (20 of 94 samples) in sheep samples. Also, 10 of 46 cattle samples (21.7%) were positive. All six goat abortion samples were positive for C. burnetii. Conclusions The findings of the study demonstrate that C. burnetii plays an important role in domestic ruminant abortions in Iran, suggesting that more attention should be paid to the role of C. burnetii in domestic animal abortions by veterinary organizations. The risk of transmitting the infection to humans due to abortion of animals should also be considered.


2021 ◽  
Vol 6 (1) ◽  
pp. 6-12
Author(s):  
Ziyad M. Bilal ◽  
◽  
Kedir S. Musa ◽  

Cestode infestations in animals are the most important parasite of livestock and humans because most of these parasites are zoonotic causing cysticercosis and hydatidosis in man and it causes economic and production losses in livestock. Diagnosis of Taenia Spp by microscopic observation lack sensitivity and specificity and detection by enzyme-linked immunosorbent assay (ELISA) technique form cross-reaction. The molecular diagnostic can be best to detect in adult and larval stage in definitive and intermediate host based on the amplification of deoxyribonucleic acid (DNA) of target gene with the primer using a different technique of polymerase chain reaction (PCR) such as multiplex PCR. Conventional PCR, real-time PCR, nested PCR, and PCR-restriction fragment length polymorphism (RFLP) are highly sensitive for the diagnosis of cestode and metacestode. Those diagnoses are used for differentiation of Taenia species and differentiation of Taenia and Echinococcus species. As compared to other diagnostic techniques most molecular methods have higher sensitivity and specificity but due to the relatively higher cost, few are commercially available. Most of the molecular diagnostic tests developed to date are generally applicable for laboratory research purposes. The developments in the genomic and proteomic analysis should be used for further understanding of parasite-animal host interaction to find additional targets for diagnosis.


2020 ◽  
Vol 71 (3) ◽  
pp. 2383
Author(s):  
S. HIRECHE ◽  
A. AGABOU ◽  
Ο. BOUAZIZ

Q fever is a zoonotic disease caused by the rickettsia-like Coxiella burnetii and leads to abortions and decreased reproductive performances in domestic ruminants. A serological survey, using ELISA test, was conducted to assess the prevalence of this infection in 226 ewes belonging to 39 flocks localized in Constantine (North-eastern Algeria). A pretested questionnaire has been submitted to farmers/shepherds to collect information related to relevant risk factors. Results revealed the presence of C. burnetii antibodies in 12.4% (95% CI: 8.08%−16.72%) of individual animals while 35.9% (95% CI: 21.20%−52.82%) of sampled flocks accounted at least one seropositive ewe. Significant causative associations were observed for origin of animals (χ2=14.29, P=0.001), vaccination against enterotoxaemia (χ2=12.12, P=0.002) and pox (χ2=5.30, P=0.025), access to the farm by foreign visitors (χ2=10.87, P=0.004), farmers/shepherds’ visits to other farms (χ2=6.31, P=0.021), disinfection frequency (χ2=7.98, P=0.046), pest infestation within farms (χ2=9.55, P=0.049) and abortion history (χ2=5.54, P=0.029). This recorded prevalence of Coxiella infection would indicate a possible responsibility of this agent in causing abortion and reproductive failures in the tested flocks. Implementing active surveillance programs and further investigations using more accurate analyses and including large samples of more animal species from several provinces are needed to eluci date the real occurrence and dynamics of this infection in the national livestock.


Author(s):  
Sara Tomaiuolo ◽  
Samira Boarbi ◽  
Tiziano Fancello ◽  
Patrick Michel ◽  
Damien Desqueper ◽  
...  

Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii. Domestic ruminants are the primary source for human infection, and the identification of likely contamination routes from the reservoir animals the critical point to implement control programs. This study shows that Q fever is detected in Belgium in abortion of cattle, goat and sheep at a different degree of apparent prevalence (1.93%, 9.19%, and 5.50%, respectively). In addition, and for the first time, it is detected in abortion of alpaca (Vicugna pacos), raising questions on the role of these animals as reservoirs. To determine the relationship between animal and human strains, Multiple Locus Variable-number Tandem Repeat Analysis (MLVA) (n=146), Single-Nucleotide Polymorphism (SNP) (n=92) and Whole Genome Sequencing (WGS) (n=4) methods were used to characterize samples/strains during 2009-2019. Three MLVA clusters (A, B, C) subdivided in 23 subclusters (A1-A12, B1-B8, C1-C3) and 3 SNP types (SNP1, SNP2, SNP6) were identified. The SNP2 type/MLVA cluster A was the most abundant and dispersed genotype over the entire territory, but it seemed not responsible for human cases, as it was only present in animal samples. The SNP1/MLVA B and SNP6/MLVA C clusters were mostly found in small ruminant and human samples, with the rare possibility of spillovers in cattle. SNP1/MLVA B cluster was present in all Belgian areas, while the SNP6/MLVA C cluster appeared more concentrated in the Western provinces. A broad analysis of European MLVA profiles confirmed the host-species distribution described for Belgian samples. In silico genotyping (WGS) further identified the spacer types and the genomic groups of C. burnetii Belgian strains: cattle and goat SNP2/MLVA A isolates belonged to ST61 and genomic group III, while the goat SNP1/MLVA B strain was classified as ST33 and genomic group II. In conclusion, Q fever is widespread in all Belgian domestic ruminants and in alpaca. We determined that the public health risk in Belgium is likely linked to specific genomic groups (SNP1/MLVA B and SNP6/MLVA C) mostly found in small ruminant strains. Considering the concordance between Belgian and European results, these considerations could be extended to other European countries.


Author(s):  
Attila Dobos ◽  
István Fodor ◽  
Gerda Kiss ◽  
Miklós Gyuranecz

AbstractQ fever is a disease of high zoonotic potential, but interest in its causative agent is rather low although it causes some public health problems in Hungary. The prevalence of Q fever is highly variable by country. The main reservoirs of the disease are the same domestic ruminant species everywhere, but the epidemiological profile depends on the features of the specific reservoir. The aim of this large-scale study was to demonstrate the importance of Q fever in different species as a possible source for human infection in most regions of Hungary. A total of 851 serum samples from 44 dairy farms, 16 sheep flocks, 4 goat farms and 3 zoos located in different parts of Hungary were tested. The presence of antibodies to Coxiella burnetii was surveyed in dairy cattle (n = 547), goats (n = 71), sheep (n = 200) and zoo animals (n = 33). The animal species tested in Hungary showed different seroprevalence values of C. burnetii infection. Seropositivity by the enzyme-linked immunosorbent assay was found in 258 out of 547 (47.2%) cows and in 69 out of 271 (25.5%) small ruminants, among them in 47 out of 200 (23.5%) sheep and in 22 out of 71 (31.0%) goats. Antibodies to C. burnetii were not detected in zoo animals. Seropositivity was demonstrated in 44 out of 44 (100%) dairy cattle farms, with at least one serum sample found to be positive on each farm. The seropositivity rate of small ruminant farms was 55.0% (11 positive out of 20 tested), with 9 out of 16 (56.3%) sheep flocks and 2 out of 4 (50.0%) goat herds showing seropositivity.


Sign in / Sign up

Export Citation Format

Share Document