scholarly journals Cooling of a Processor With the Use of a Heat Pump

2018 ◽  
Vol 28 (1) ◽  
pp. 16-25
Author(s):  
Zygmunt Lipnicki ◽  
Hanna Lechów ◽  
Katarzyna Pantoł

Abstract In this paper the problem of cooling a component, in the interior of which heat is generated due to its work, was solved analytically. the problem of cooling of a processor with the use of a heat pump was solved based on a earlier theoretical analysis of authors of external surface cooling of the cooled component by using the phenomenon of liquid evaporation. Cases of stationary and non-stationary cooling were solved as well. The authors of the work created a simplified non-stationary analytical model describing the phenomenon, thanks to which heat distribution within the component, contact temperature between the component and liquid layer, and the evaporating substance layer thickness in relation to time, were determined. Numerical calculations were performed and appropriate charts were drawn. The resulting earlier analytical solutions allowed conclusions to be drawn, which might be of help to electronics engineers when designing similar cooling systems. Model calculations for a cooling system using a compressor heat pump as an effective method of cooling were performed.

2016 ◽  
Vol 22 (3) ◽  
pp. 111-126
Author(s):  
Zygmimt Lipnicki ◽  
Haima Lechów ◽  
Kataizyna Pantoł

Abstract Ail analytical solution to the equation for cooling of a unit, in the interior of which heat is generated, is presented. For that reason, a simplified non-stationary model for determination of the temperature distribution within the unit, temperature of the contact between unit and a liquid layer, and the evaporating layer thickness in the function of time, is elaborated. A theoretical analysis of the external cooling of the unit, by considering the phenomenon of the liquid evaporation with the use of the Fourier and Poisson’s equations, is given. Both, stationary- and non-stationary description of the cooling are shown. The obtained results of simulation seems to be useful in designing the similar cooling systems. A calculation mode for a cooling systems equipped with the compressor heat pump, as an effective cooling method, is also performed.


2009 ◽  
Vol 49 (12) ◽  
pp. 1125 ◽  
Author(s):  
M. Dağtekin ◽  
C. Karaca ◽  
Y. Yildiz

Chicken meat and egg production in the Çukurova region of Southern Turkey shows enormous potential for growth. However, high temperatures in summer pose serious difficulties for these types of production. Evaporative pad cooling systems have been used to minimise rises in temperature and are commonly used in poultry houses in this region. The change of air temperature from the entry point to the system through the pads, to the exit point of the broiler house was investigated in this study. Experiments were carried out in a tunnel-ventilated broiler house in the Çukurova region. The broiler house has the capacity to house 15 000 chicks with a floor area of 70 by 12 m. In this experiment, the broiler house incorporated 15-cm-thick cellulose-based pads. Results obtained in August–September 2007 revealed a cooling efficiency of 69.35%, a 5.19°C decrease from the outside air temperature after passing through the pads, and a 1.52°C increase in air temperature at the exit point, which was located at the end of the broiler house.


Author(s):  
Prakash R. Dhamshala

This paper deals with application of a heat pump as a part of the dedicated outside air system (DOAS) unit. DOAS systems are known to provide the energy cost savings by dehumidifying the fresh ventilating air in conjunction with the energy and heat recovery systems and also in parallel with the sensible cooling system. The energy cost savings associated with these systems results from operating the sensible cooling systems at higher evaporating temperatures which results in a higher coefficient of performance for the sensible chiller, lower pumping costs and lower capital costs. It is found that the operation of DOAS unit with the radiant panel cooling systems raises the energy cost savings even more significantly. Using hourly weather data, the energy cost saving analysis is performed for several geographical locations and estimated cost savings exceed well above 30 percent of the corresponding commercial building operational costs using the traditional VAV systems for most of the locations in USA.


2020 ◽  
pp. 75-86
Author(s):  
Sergio Antonio Camargo ◽  
Lauro Correa Romeiro ◽  
Carlos Alberto Mendes Moraes

The present article aimed to test changes in cooling water temperatures of males, present in aluminum injection molds, to reduce failures due to thermal fatigue. In order to carry out this work, cooling systems were studied, including their geometries, thermal gradients and the expected theoretical durability in relation to fatigue failure. The cooling system tests were developed with the aid of simulations in the ANSYS software and with fatigue calculations, using the method of Goodman. The study of the cooling system included its geometries, flow and temperature of this fluid. The results pointed to a significant increase in fatigue life of the mold component for the thermal conditions that were proposed, with a significant increase in the number of cycles, to happen failures due to thermal fatigue.


2021 ◽  
Vol 13 (2) ◽  
pp. 983
Author(s):  
Mustapha Mukhtar ◽  
Bismark Ameyaw ◽  
Nasser Yimen ◽  
Quixin Zhang ◽  
Olusola Bamisile ◽  
...  

The world has not been able to achieve minimum greenhouse gas emissions in buildings’ energy consumptions because the energy and emissions optimization techniques have not been fully utilized. Thermal comfort is one of the most important issues for both residential and commercial buildings. Out of the 40% of global energy consumed by buildings, a large fraction is used to maintain their thermal comfort. In this study, a comprehensive review of the recent advancements in building energy conservation and efficiency application is presented based on existing high-quality research papers. Additionally, the retrofit of the heating/cooling and hot water system for an entire community in Cyprus is presented. This study aims to analyze the technical and environmental benefits of replacing existing electric heaters for hot water with heat pump water heating systems and the use of heat pump air conditioners for thermal comfort in place of the existing ordinary air conditioners for space heating and cooling. One administrative building, 86 apartments (including residential and commercial) buildings, and a restaurant building is retrofitted, and the feasibility of the project is determined based on three economic indicators, namely; simple payback period (SPP), internal rate of return (IRR), and net present value (NPV). The electrical energy required by the hot water systems and the heating/cooling system is reduced by 263,564 kWh/yr and 144,825 kWh/yr, respectively. Additionally, the retrofit project will reduce Cyprus’ CO2 emission by 121,592.8 kg yearly. The SPP, IRR, and NPV for the project show that the retrofit is economically feasible.


Author(s):  
Giovanni Nurzia ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The deployment of solar driven air conditioning is a feasible target in all countries where high solar irradiation matches high cooling loads in buildings: the goal is to gradually replace compression chillers and reduce peak electricity demand during summer. Moreover, as solar thermal collectors are installed, solar cooling systems can be profitably employed during winter. In the present work a code has been implemented for the simulation and the design optimization of combined solar heating and cooling systems. The following system layout has been considered: in warm months the cooling demand is satisfied by means of an absorption chiller — driven by a solar collector field — and a reversible heat pump operating in series. A hot storage matches the variability of solar radiation, while a cold storage smoothes the non-stationarity of cooling demand. During winter, the reversible compression heat pump operates for space heating. Solar collectors are used as thermal source at the evaporator of the heat pump, increasing its coefficient of performance. The code, based on TRNSYS platform, is able to simulate the system throughout a year. Besides TRNSYS standard components a detailed model of the absorption chiller has been included, in order to accurately simulate its off-design operation. Using an optimization tool the size of each component is identified for a given space heating and cooling demand. The minimization of life cycle costs of the system has been chosen as the objective of the optimization. Results of a case study are presented and discussed for a solar heating and cooling plant in an office building. The optimization procedure has been carried out with simulations for a typical Northern Italy town (Alpine climate) and a typical Southern Italy town (Mediterranean climate).


Author(s):  
Seyyed Khandani ◽  
Himanshu Pokharna ◽  
Sridhar Machiroutu ◽  
Eric DiStefano

Remote heat pipe based heat exchanger cooling systems are becoming increasingly popular in cooling of notebook computers. In such cooling systems, one or more heat pipes transfer the heat from the more populated area to a location with sufficient space allowing the use of a heat exchanger for removal of the heat from the system. In analsysis of such systems, the temperature drop in the condenser section of the heat pipe is assumed negligible due to the nature of the condensation process. However, in testing of various systems, non linear longitudinal temperature drops in the heat pipe in the range of 2 to 15 °C, for different processor power and heat exchanger airflow, have been measured. Such temperature drops could cause higher condenser thermal resistance and result in lower overall heat exchanger performance. In fact the application of the conventional method of estimating the thermal performance, which does not consider such a nonlinear temperature variations, results in inaccurate design of the cooling system and requires unnecessarily higher safety factors to compensate for this inaccuracy. To address the problem, this paper offers a new analytical approach for modeling the heat pipe based heat exchanger performance under various operating conditions. The method can be used with any arbitrary condenser temperature variations. The results of the model show significant increase in heat exchanger thermal resistance when considering a non linear condenser temperature drop. The experimental data also verifies the result of the model with sufficient accuracy and therefore validates the application of this model in estimating the performance of these systems.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


Sign in / Sign up

Export Citation Format

Share Document