scholarly journals Seismic Performance Evaluation of a Proposed Buckling-Restrained Brace for RC-MRFS

2019 ◽  
Vol 29 (3) ◽  
pp. 164-173
Author(s):  
Arunraj Ebanesar ◽  
Daniel Cruze ◽  
Ehsan Noroozinejad Farsangi ◽  
Vincent Sam Jebadurai Seenivasan ◽  
Adil Dar Mohammad ◽  
...  

Abstract This paper presents a novel buckling-restrained brace (BRB) where the inner core is restrained by a concrete infilled Expanded Polystyrene Sheet (EPS) instead of the conventional concrete infilled tube section, to resist inner core buckling. It serves two purposes, firstly, the EPS is a ductile material, which is favourable in terms of seismic performance and, secondly, the outer construction material has better corrosion resistance. Thus, the life of the steel core can be prolonged. In this study, 6 BRB specimens were prepared, of which 3 BRB specimens were infilled with concrete and the remaining 3 BRB specimens with concrete and EPSs, in order to study their performance under cyclic loading. Three different core heights, all with the same core thickness, were adopted. The test results indicate that the load-carrying capacity of this novel BRB is higher than the conventional BRB. Further, the length of the steel tube also affects the strength of the seismic disaster mitigation system. Lastly, a numerical study on a single bay RC frame, with and without BRB subjected to time history analysis, was conducted to check the global performance of this novel system. It was found that the structural responses had substantially decreased.

2012 ◽  
Vol 28 (2) ◽  
pp. 621-637 ◽  
Author(s):  
Chun Ni ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Steven Kuan ◽  
Marjan Popovski

In 2009, the British Columbia Building Code was amended to increase the allowable height of wood-frame residential buildings to six stories from four stories. This paper presents the details of a numerical study undertaken to understand the seismic performance of six-story wood-frame buildings designed in accordance with the 2006 British Columbia Building Code. To investigate the seismic behavior, a four-story building was used to represent the benchmark seismic performance prior to the amendment. Two independent analyses using computer programs DRAIN-3DX and SAPWood were carried out on representative buildings located in the city of Vancouver, BC, using a suite of 20 earthquake records scaled to the design seismic hazard level for the site. The analyses showed that six-story wood-frame buildings had similar performance to four-story wood-frame buildings.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huawei Yang ◽  
Ji-wei Luo ◽  
Jie Zhang ◽  
Pei-wen Zhang

Investigation on penetration into concrete targets is of great importance as concrete is widely used as the fundamental construction material. To achieve a more accurate prediction of penetration depths of concrete targets, a further study was conducted to explore the entrance effect by using AUTODYN hydrocode in this study. The numerical results on both deceleration-time history and depth of penetration of projectiles are in good agreement with experimental data, which demonstrate the feasibility of the numerical model in these conditions. A new target model was established with a predrilled hole around the symmetry axis to simulate the entrance effect of the crater phase on the penetration process. Compared with the regular target, the predrilled target enters the peak of acceleration earlier, leading to the reduction of the depth of penetration. In addition, simulation results indicated that nose shape significantly influenced crater region depth, while the depth was independent of the impact velocity and the target strength. Based on the simulation of entrance effect, a modified formula of penetration depth has been proposed and validated in terms of different nose shapes. The crater region depths obtained from the simulations can improve the accuracy of the predictions of the penetration depths for the penetration of concrete targets.


2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


1999 ◽  
Vol 26 (4) ◽  
pp. 379-394 ◽  
Author(s):  
M S Medhekar ◽  
DJL Kennedy

The seismic performance of single-storey steel buildings, with concentrically braced frames and a roof diaphragm that acts structurally, is evaluated. The buildings are designed in accordance with the National Building Code of Canada 1995 and CSA Standard S16.1-94 for five seismic zones in western Canada with seismicities ranging from low to high. Only frames designed with a force modification factor of 1.5 are considered. Analytical models of the building are developed, which consider the nonlinear seismic behaviour of the concentrically braced frame, the strength and stiffness contributions of the cladding, and the flexibility, strength, and distributed mass of the roof diaphragm. The seismic response of the models is assessed by means of a linear static analysis, a response spectrum analysis, a nonlinear static or "pushover" analysis, and nonlinear dynamic time history analyses. The results indicate that current design procedures provide a reasonable estimate of the drift and brace ductility demand, but do not ensure that yielding is restricted to the braces. Moreover, in moderate and high seismic zones, the roof diaphragm responds inelastically and brace connections are overloaded. Recommendations are made to improve the seismic performance of such buildings.Key words: analyses, concentrically braced frame, dynamic, earthquake, flexible diaphragm, low-rise, nonlinear, seismic design, steel.


2020 ◽  
Vol 36 (2_suppl) ◽  
pp. 288-313
Author(s):  
Juan M Mayoral ◽  
Gilberto Mosqueda ◽  
Daniel De La Rosa ◽  
Mauricio Alcaraz

Seismic performance of tunnels during earthquakes in densely populated areas requires assessing complex interactions with existing infrastructure such as bridges, urban overpasses, and metro stations, including low- to medium-rise buildings. This article presents the numerical study of an instrumented tunnel, currently under construction on stiff soils, located in the western part of Mexico City, during the Puebla-Mexico 19 September 2017 earthquake. Three-dimensional finite difference models were developed using the software FLAC3D. Initially, the static response of the tunnel was evaluated accounting for the excavation technique. Then, the seismic performance evaluation of the tunnel was carried out, computing ground deformations and factors of safety, considering soil nonlinearities. Good agreement was observed between predicted and observed damage during post-event site observations. Once the soundness of the numerical model was established, a numerical study was undertaken to investigate the effect of frequency content in tunnel-induced ground motion incoherence for tunnels built in cemented stiff soils. A series of strong ground motions recorded during normal and subduction events were used in the simulations, considering a return period of 250 years, as recommended in the Mexico City building code. From the results, it was concluded that the tunnel presence leads to important frequency content modification in the tunnel surroundings which can affect low- to mid-rise stiff structures located nearby. This important finding must be taken into account when assessing the seismic risk in highly populated urban areas, such as Mexico City.


2021 ◽  
Vol 11 (7) ◽  
pp. 3190
Author(s):  
Edmundo Schanze ◽  
Gilberto Leiva ◽  
Miguel Gómez ◽  
Alvaro Lopez

Engineering practitioners do not usually include soil–structure interactions in building design; rather, it is common to model and design foundations as embedded joints with joint–based reactions. In some cases, foundation structures are modeled as rigid bodies, embedding the first story into lower vertical elements. Given that the effects of underground floors on the seismic response are not generally included in current building design provisions, it has been little explored in the literature. This work compares and analyzes models to study the effects of different underground stories modeling approaches using earthquake vibration data recorded for the 16–story Alcazar building office in downtown Viña del Mar (Chile). The modeling expands beyond an embedded first story structure to soil with equivalent springs, representing soil–structure interaction (SSI), with varying rigid soil homogeneity. The building was modeled in a finite element software considering only dead load as a static load case because the structure remained in the framing stage when the monitoring system was operating. The instruments registered 72 aftershocks from the 2010 Maule Earthquake, and this study focused on 11 aftershocks of different hypocenters and magnitudes to collect representative information. The comparisons between empirical records and models in this study showed a better fit between the model and the real vibration data for the models that do consider the SSI using horizontal springs attached to the retaining walls of the underground stories. In addition, it was observed that applying a stiffness reduction factor of 0.7 to all elements in deformation verification models for average–height buildings was suitable to analyze the behavior under small earthquakes; better results are obtained embedding the structure in the foundation level than embedding in the street level; the use of horizontal springs with Kuesel’s model with traction for the analysis of the structure yields appropriate results; it is necessary to carefully select the spring constants to be used, paying special attention to the vertical springs. Even though the results presented herein indicate that the use of vertical springs to simulate the SSI of the base slab can result in major differences concerning the real response, it is necessary to obtain more data from instrumentation across a wider variety of structures to continue to evaluate better design and modeling practices. Similarly, further analyses, including nonlinear time–history and high–intensity events, are needed to best regulate building design.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 422-445
Author(s):  
Md Riasat Azim ◽  
Mustafa Gül

Railway bridges are an integral part of any railway communication network. As more and more railway bridges are showing signs of deterioration due to various natural and artificial causes, it is becoming increasingly imperative to develop effective health monitoring strategies specifically tailored to railway bridges. This paper presents a new damage detection framework for element level damage identification, for railway truss bridges, that combines the analysis of acceleration and strain responses. For this research, operational acceleration and strain time-history responses are obtained in response to the passage of trains. The acceleration response is analyzed through a sensor-clustering-based time-series analysis method and damage features are investigated in terms of structural nodes from the truss bridge. The strain data is analyzed through principal component analysis and provides information on damage from instrumented truss elements. A new damage index is developed by formulating a strategy to combine the damage features obtained individually from both acceleration and strain analysis. The proposed method is validated through a numerical study by utilizing a finite element model of a railway truss bridge. It is shown that while both methods individually can provide information on damage location, and severity, the new framework helps to provide substantially improved damage localization and can overcome the limitations of individual analysis.


Sign in / Sign up

Export Citation Format

Share Document