scholarly journals Identification of new Trichoderma strains with antagonistic activity against Botrytis cinerea

2013 ◽  
Vol 25 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Aleksandra Bogumił ◽  
Lidia Sas Paszt ◽  
Anna Lisek ◽  
Paweł Trzciński ◽  
Anton Harbuzov

ABSTRACT The antagonistic activity of 52 isolates of Trichoderma spp. against Botrytis cinerea was tested in in vitro conditions using the dual culture technique. The results revealed that all of the Trichoderma isolates had the ability to inhibit the mycelial growth of grey mould. The percentage reduction in the growth of Botrytis cinerea after six days of incubation at 25ºC varied between 45-78%. The isolates Tr43 and Tr52 showed the highest antagonistic activity (Tr43 - 76%; Tr52 - 78%). Biochemical and molecular identification indicated that both isolates were T. atroviride. The isolates showed differences in the utilisation of 11 to 96 different carbon sources. Additional biochemical tests revealed the ability of Tr43 and Tr52 to produce siderophores, indole-3-acetic acid and chitinases. Neither of the isolates gave positive results regarding phosphate solubilisation on Pikovskaya’s medium.

2018 ◽  
Vol 10 (3) ◽  
pp. 813-817
Author(s):  
Erayya SL ◽  
Nandani Shukla ◽  
Kahkashan Arzoo ◽  
J. Kumar

In vitro efficacy of twenty five Trichoderma isolates (twenty were TCMS series viz., TCMS 2, 4, 5, 12, 14a, 14b, 15, 16, 24, 32, 34, 36, 43, 60, 62, 64, 65, 72, 85 and 93, and five Th series; Th 1, 3, 14, 19 and 32) were ascertained for their antagonistic activity against few major plant pathogenic oomycetes namely, Phytophthora infestans, P. parasitica and Pythium aphenidermatum using dual culture technique. P. infestans was isolated from infected potato leaves and Pythium aphenidermatum from infected brinjal. P. parasitica culture was collected from Central Potato Research Institute (CPRI), Simla. The present study was conducted at Biological Control Laboratory, Department of Plant Pathology, G.B. Pant University of Agriculture and Technology, Pantnagar. All the 25 Trichodrma isolates were found significantly effective against the test pathogens. TCMS-36 and TCMS-72 were found highly effective against P. aphinidermatum with 59.57 per cent inhibition of radial growth of the fungus. Maximum reduction in mycelial growth of P. infestans was recorded with isolate TCMS-64 (60.40%) followed by TCMS-65 (59.41%), TCMS-34 (58.42%), TCMS-24, TCMS-43 and TCMS-93 with 57.43 per cent inhibition. While, maximum inhibition of P. parasitica was recorded with TCMS-4 (92.75%) followed by TCMS-36 (92.23%), TCMS-2 (91.71%), TCMS-14a (91.17%) and TCMS-32 (90.67%). The selected potential isolates may be applied to sustainable and eco-friendly management of many major crop diseases caused by the oomycetes and other fungi.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Massinissa Hammad ◽  
Thomas Guillemette ◽  
Meriem Alem ◽  
Franck Bastide ◽  
Meriem Louanchi

Abstract Background Grey mould caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) is one of the most destructive fungal diseases of Mediterranean crops. In Algeria, few studies have been made on the economic impact of this disease. Nevertheless, it is practically present in all tomato and strawberry greenhouses, as well as in prospected vineyards in the north and south of the country. The complexity of chemical control of this disease has led to search for Trichoderma strains that are effective in biological control. Results Fifteen isolates of Trichoderma spp. were obtained from vigorous and healthy plants (tomatoes, strawberries, and vines) rhizosphere, and from a commercial bio-compost (Bio-composte®), then identified as T. afroharzianum (four isolates), T. gamsii (four isolates), T. longibrachiatum (three isolates), T. atroviride (one isolate), T. brevicompactum (one isolate), T. breve (one isolate), and T. lixii (one isolate) on the basis of DNA sequence analysis of four genes (ITS, tef1, rpb2, and acl1). In vitro biocontrol tests revealed that four Algerian isolates of Trichoderma spp. (TAtC11, TGS7, TGS10, and TBS1) had a high antagonistic activity against B. cinerea, the mycelial growth has been reduced by 62 to 65% in dual-culture technique, by 62.31 to 64.49% in volatile compounds test, and a high inhibition of germling growth was recorded by TBS1 isolate with 90.68% in Culture filtrates test. Biocontrol tests carried out on tomato plants with T. brevicompactum (TBS1), T. atroviride (TAtC11), and T. lixii (TLiC8) against B. cinerea (BCT04) showed that TBS1 inoculation significantly reduced the incidence of disease by 64.43 and 51.35% in preventive and curative treatment, respectively. Conclusion The present study revealed the first report of T. brevicompactum, T. breve, and T. lixii in Algeria, and it also contributes to the promotion of the use of native strains of Trichoderma in biological control leading to a better preservation of soil microbial diversity.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


Author(s):  
H.V. Parmar ◽  
N.M. Gohel

Background: Chickpea wilt complex caused by several soil-borne pathogens is the major yield-reducing malady worldwide. Biological control is one of the best, low-cost and ecologically sustainable method for managing plant diseases caused by soil-borne pathogens. Methods: In this present investigation Panchagavya and Trichoderma spp. were evaluated by following poisoned food technique and dual culture technique against wilt complex causing pathogens i.e. Fusarium oxysporum f. sp. ciceri, Fusarium solani and Macrophomina phaseolina. Result: Among the different isolates of Trichoderma spp. evaluated, Trichoderma viride (AAU isolate) was highly antagonistic to F. oxysporum f. sp. ciceri (52.78%) and F. solani (65.37%) whereas, Trichoderma asperellum (AAU isolate) was highly antagonistic to M. phaseolina (65.93%). Panchagavya at the highest concentration (50%) showed significantly higher efficacy (80.74, 66.62 and 49.67%) in inhibiting the mycelial growth of all three pathogens and at the lowest concentration it was moderately effective.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
E. K. Wanjiku ◽  
J. W. Waceke ◽  
J. N. Mbaka

Demand for organic avocado fruits, together with stringent food safety standards in the global market, has made producers to use alternative, safe, and consumer-friendly strategies of controlling the postharvest fungal disease of avocado fruits. This study assessed the in vitro efficacy of Trichoderma spp. (T. atroviride, T. virens, T. asperellum, and T. harzianum) against isolated avocado stem-end rot (SER) fungal pathogens (Lasiodiplodia theobromae, Neofusicoccum parvum, Nectria pseudotrichia, and Fusarium solani) using a dual culture technique. The Trichoderma spp. were also evaluated singly on postharvest “Hass” avocado fruits. Spore suspension at 5 × 104 conidial/ml of the Trichoderma spp. was applied on the avocado fruits at three time points, twenty-four hours before the fungal pathogen (preinoculation), at the same time as the fungal pathogen (concurrent inoculation), and 24 hours after the fungal pathogen (postinoculation). In the in vitro study, T. atroviride showed the highest mycelial growth inhibition against N. parvum (48%), N. pseudotrichia (55%), and F. solani (32.95%), while T. harzianum had the highest mycelial growth inhibition against L. theobromae. Trichoderma asperellum was the least effective in inhibiting the mycelial growth of all the pathogens. Similarly, T. virens showed the highest mycelial growth inhibition against N. pseudotrichia at 45% inhibition. On postharvest “Hass” fruits, T. atroviride showed the highest efficacy against N. parvum, N. pseudotrichia, and F. solani in all the applications. Trichoderma virens and T. harzianum were most effective against all the pathogens during postinoculation, while Lasiodiplodia theobromae was best controlled by T. virens, T. harzianum, and T. asperellum during postinoculation. Both T. atroviride and T. harzianum present a potential alternative to synthetic fungicides against postharvest diseases of avocado fruits, and further tests under field conditions to be done to validate their efficacy. The possibility of using Trichoderma spp. in the management of SER on avocado fruits at a commercial level should also be explored.


2019 ◽  
Vol 8 (1) ◽  
pp. 65 ◽  
Author(s):  
Lorena Barra-Bucarei ◽  
Andrés France Iglesias ◽  
Macarena Gerding González ◽  
Gonzalo Silva Aguayo ◽  
Jorge Carrasco-Fernández ◽  
...  

Botrytis cinerea causes substantial losses in tomato and chili pepper crops worldwide. Endophytes have shown the potential for the biological control of diseases. The colonization ability of native endophyte strains of Beauveria bassiana and their antifungal effect against B. cinerea were evaluated in Solanaceae crops. Root drenching with B. bassiana was applied, and endophytic colonization capacity in roots, stems, and leaves was determined. The antagonistic activity was evaluated using in vitro dual culture and also plants by drenching the endophyte on the root and by pathogen inoculation in the leaves. Ten native strains were endophytes of tomato, and eight were endophytes of chili pepper. All strains showed significant in vitro antagonism against B. cinerea (30–36%). A high antifungal effect was observed, and strains RGM547 and RGM644 showed the lowest percentage of the surface affected by the pathogen. Native strains of B. bassiana colonized tomato and chili pepper tissues and provided important levels of antagonism against B. cinerea.


2019 ◽  
Vol 57 (2) ◽  
pp. 222-229
Author(s):  
Alexandra González-Esparza ◽  
Kong S. Ah-Hen ◽  
Osvaldo Montenegro ◽  
Erika Briceño ◽  
Joaquín Stevenson ◽  
...  

The aim of this study is to evaluate the survival rate and effective antagonistic activity against Botrytis cinerea, responsible for grey mould on harvested fruits and vegetables, of yeast Rhodotorula mucilaginosa, isolated and identified from the natural microbiota of murta (Chilean guava) berries, after spray drying at different inlet air temperatures, mass per volume ratio of encapsulating agent (maltodextrin) and feed flow rates. The 100 % survival of the yeast was obtained after spray drying with 18 % maltodextrin at 130 °C inlet temperature and a feed flow rate of 9.25 mL/min. The dried yeast obtained under such conditions had the highest antagonistic activity in vitro and in vivo on apples, which showed that spray drying is a valid method to produce active dried cells of R. mucilaginosa that can be used for biocontrol of grey mould spoilage. It was also found that the encapsulating agent maltodextrin improved the in vitro antagonistic activity of R. mucilaginosa.


2021 ◽  
Vol 15 (3) ◽  
pp. 2
Author(s):  
Wilfridus Adyatma Putranto ◽  
Rully Adi Nugroho ◽  
Petrus Sunu Hardiyanta ◽  
Desti Christian Cahyaningrum

The pathogenic fungi, such as Fusarium in the rhizosphere of tomato (Solanum lycopersicum) negatively affects the yield and quality of the plant. A number of biological control agents have been used for protecting tomato plants against wilt diseases including various fungal species. The objective of this study was to evaluate  the antagonism effects of Trichoderma atroviride and T. harzianum against the pathogen Fusarium sp. associated with tomato wilt. In this study, the antagonism of these Trichoderma spp. against the Fusarium sp. was tested in vitro by the dual culture technique, and the percentage inhibition of radial growth (PIRG) and the antagonism reaction (scale 1-5) were evaluated. The results showed that T. atroviride and T. harzianum led to 70.8% PIRG and scale 1 antagonism reaction, and  40.6% PIRG and scale 3 antagonism reaction against Fusarium sp. associated with tomato wilt after 7 days of incubation, respectively. These results indicate that application of T. atroviride and T. harzianum may be promising approach for biological control of Fusarium wilt of tomato and may play an important role in sustainable agriculture.


2019 ◽  
Vol 32 ◽  
pp. 207-219
Author(s):  
Mohammad A. Jaber ◽  
Mohammed A. Fayyadh

Thirty-nine isolates of Actinomycetes were isolated from different sources such as rhizosphere and plant roots of Alfalfa, Clovers, cowpea, Mung bean, sorghum and date palms. Biochemical tests showed that all isolates were gram positive and capable of producing amylase, catalase and gelatinase enzymes. The isolates showed a positive test for gram staining. The isolates were capable of producing the enzymes of amylase, catalase and gelatinase. Dual culture technique showed that Streptomyces griseorubens, S. tendae 6, S. tendae2, S. tendae 5, S. parvulus and S. tendae 6 had high antagonistic activity against Macrophomina phaseolina as a zone of inhibition reached 15, 14, 13, 15, 14 and 12mm, respectively. Molecular identification revealed that actinomycetes isolate No 15, 23, 24 and 30 isolated from rhizosphere of Clovers, Sorghum, Alfalfa, Mung bean had 99% similarity with S. tendae while Actinomycetes No 38 isolated from rhizosphere of Cowpea had 99% similarity with S. grseorubens .and isolate No 27 isolated from date palms had 99% similarity with S.parvulus. all isolate were deposited at NCBI with GenBank accession number LC499602.1, LC499603.1, LC499606.1, LC499607.1, LC499604.1, LC499605.1. The isolate of S. griseorubens showed high efficacy in reducing disease. Which was 10.1% compared with 49.5% in control treatment on cowpea. 22.0% in mung bean compared to 43.4% in control treatment. In the field experiment, the results showed that soil treated with Actinomycetes isolates led to an increase in the percentage of seed germination and reduced the percentage of fungus infection. S. griseorubens reduced the percentage of infection to 11.54% compared to 32.33% in control treatment.


2022 ◽  
Vol 951 (1) ◽  
pp. 012021
Author(s):  
Muzakir ◽  
Hifnalisa ◽  
J. Jauharlina ◽  
Rina Sriwati

Abstract The objective of this research was to determine the antagonistic activity of Trichoderma spp. isolated from patchouli rhizosphere (Pogostemon cablin Benth.). Another objective was to perform antagonistic screening of these fungi to inhibit the growth of the wilted pathogen Fusarium spp. In vitro research was conducted in the Laboratory of Plant Pathology, Universitas Syiah Kuala, from January to June 2020. The study used a completely randomised design with five treatments and three replications. The antagonistic screening was carried out by using the dual culture method of Trichoderma spp. against Fusarium spp. with the medium of Potato Dextrose Agar (PDA). The result showed that five isolates of Trichoderma have different antagonistic percentages in inhibiting the Fusarium. The highest antagonistic activity was found from isolate 2 and the lowest value was shown by isolate 3.


Sign in / Sign up

Export Citation Format

Share Document