scholarly journals Spatial exploration, dendrometric characteristics and prediction models of wood production in a stand of Acacia schaffneri in Durango, Mexico

2021 ◽  
Vol 49 (1) ◽  
pp. 70-79
Author(s):  
Luis Manuel Valenzuela Nuñez ◽  
Aldo Rafael Martínez Sifuentes ◽  
José Antonio Hernández Herrera ◽  
Cristina García de la Peña ◽  
Edwin Amir Briceño Contreras ◽  
...  

Abstract Degraded vegetation is the result of a process that affects structural and functional characteristics. Tree species from the Acacia genus are very important to the ecosystem in semi-arid lands due to their participation in the recovery of highly degraded areas. One of the most important species among this genus is A. schaffneri. The status of a forest stand is determined according to its structure, including height, stratum and density. Remote sensing is a valuable method for estimating volumetric stocks and associated changes in forest populations over established periods of time. The objective of this research was to estimate wood volume of A. schaffneri using remote sensing, and to complement that information with the results obtained from an estimation method based on forest measurements. The results obtained showed that the crown area was the dendrometric variable that can be used in a wood volume prediction model. In the exploratory analysis between dendrometric variables and remote sensing showed low and negative associations were observed in the four stations analyzed. There are conservation problems due to anthropogenic activities, among which stands out the intensive grazing that results in a decrease of the natural regeneration capacity of Acacia schaffneri.

2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


2021 ◽  
Vol 13 (15) ◽  
pp. 2862
Author(s):  
Yakun Xie ◽  
Dejun Feng ◽  
Sifan Xiong ◽  
Jun Zhu ◽  
Yangge Liu

Accurately building height estimation from remote sensing imagery is an important and challenging task. However, the existing shadow-based building height estimation methods have large errors due to the complex environment in remote sensing imagery. In this paper, we propose a multi-scene building height estimation method based on shadow in high resolution imagery. First, the shadow of building is classified and described by analyzing the features of building shadow in remote sensing imagery. Second, a variety of shadow-based building height estimation models is established in different scenes. In addition, a method of shadow regularization extraction is proposed, which can solve the problem of mutual adhesion shadows in dense building areas effectively. Finally, we propose a method for shadow length calculation combines with the fish net and the pauta criterion, which means that the large error caused by the complex shape of building shadow can be avoided. Multi-scene areas are selected for experimental analysis to prove the validity of our method. The experiment results show that the accuracy rate is as high as 96% within 2 m of absolute error of our method. In addition, we compared our proposed approach with the existing methods, and the results show that the absolute error of our method are reduced by 1.24 m-3.76 m, which can achieve high-precision estimation of building height.


2021 ◽  
Vol 13 (4) ◽  
pp. 572
Author(s):  
Gintautas Mozgeris ◽  
Ivan Balenović

The pre-requisite for sustainable management of natural resources is the availability of timely, cost-effective, and comprehensive information on the status and development trends of the management object [...]


2021 ◽  
Vol 10 (3) ◽  
pp. 185
Author(s):  
Chenyang Zhang ◽  
Qingli Shi ◽  
Li Zhuo ◽  
Fang Wang ◽  
Haiyan Tao

Information on the mixed use of buildings helps understand the status of mixed-use urban vertical land and assists in urban planning decisions. Although a few studies have focused on this topic, the methods they used are quite complex and require manual intervention in extracting different function patterns of buildings, while building recognition rates remain unsatisfying. In this paper, we propose a new method to infer the mixed use of buildings based on a tensor decomposition algorithm, which integrates information from both high-resolution remote sensing images and social sensing data. We selected the Tianhe District of Guangzhou, China to validate our method. The results show that the recognition rate of buildings can reach 98.67%, with an average recognition accuracy of 84%. Our study proves that the tensor decomposition algorithm can extract different function patterns of buildings unsupervised, while remote sensing data can provide key information for inferring building functions. The tensor decomposition-based method can serve as an effective and efficient way to infer the mixed use of buildings, which can achieve better results with simpler steps.


2017 ◽  
Vol 11 (1) ◽  
pp. 219-238 ◽  
Author(s):  
Laxmi Goparaju ◽  
P. Rama Chandra Prasad ◽  
Firoz Ahmad

Abstract Forests, the backbone of biogeochemical cycles and life supporting systems, are under severe pressure due to varied anthropogenic activities. Mining activities are one among the major reasons for forest destruction questioning the survivability and sustainability of flora and fauna existing in that area. Thus, monitoring and managing the impact of mining activities on natural resources at regular intervals is necessary to check the status of their depleted conditions, and to take up restoration and conservative measurements. Geospatial technology provides means to identify the impact of different mining operations on forest ecosystems and helps in proposing initiatives for safeguarding the forest environment. In this context, the present study highlights the problems related to mining in forest ecosystems and elucidates how geospatial technology can be employed at various stages of mining activities to achieve a sustainable forest ecosystem. The study collates information from various sources and highlights the role of geospatial technology in mining industries and reclamation process.


2019 ◽  
pp. 1-4
Author(s):  
N. Skrypnyk

Goal. To identify the main ways of getting into the country of invasive species brown marble bug Halyomorpha halys Stål. Methods. Analytical study of information messages to the European and Mediterranean organization of plant protection (of ESR) and data of phytosanitary services of the EU, literary and Internet resources. Results. Provides information on new economically important species Halyomorpha halys Stål., which is rapidly spreading in Europe. In Ukraine, the marble bug has the status of a quarantine, but there is a risk of further spread. His first appearance on the territory of our country has registered in 2018 Threat of invasive species, a polyphage, which causes significant damage to agricultural, forest and decorative cultures. Pest can cause damage to fruit, berry crops, vineyards, beans, soy, corn, and weeds. The list of host plants includes over 300 species of plants from 49 families, however, the preference for Halyomorpha halys gives the members of the family Rosacea. Danger of falling of the pest in Ukraine of the European countries of planting material, plant products, wood packaging materials, Luggage etc. The absence of natural enemies promotes the active dispersal of the pest. The focus should be directed on the study of natural brown marble bug. The rapid spread of Halyomorpha halys in the EU countries is of great concern to scientists. The experience of foreign scientists shows that effectively regulates its abundance parasitoid Trissolcus japonicas (Ashmead) and entomoparasitic fungus Beauveria bassiana. Conclusions. There is an active resettlement of the pest in Europe. There is a risk of introduction and spread of the species Halyomorpha halys Stål, is a threat to the country.


2021 ◽  
Author(s):  
Chadi Abdallah ◽  
Gina Tarhini ◽  
Mariam Daher ◽  
Hussein Khatib ◽  
Mark Zeitoun

<p>Coping with the issue of water scarcity and growing competition for water among different sectors requires effective water management strategies and decision processes. ‘Getting it right’ becomes doubly important when dealing with intenational transboundary rivers. The Yarmouk tributary to the Jordan River is one highly exploited in the Middle East, and is enveloped by ambiguous treaties and decades of violent and non-violent conflict. Seeking to chart a more sustainable and equitable future, this work performs a 'water accounting plus' methodology employing readily available remotely sensed satellite-based data coupled with available measurements.  A variety of methods described herein were used to detect irrigated crops and produce maps showing the distribution throughout the basin. The framework also focuses on the classification of land use categories and the processes by which water is depleted over all land use classes that contributes to separate the beneficial from non-beneficial usage of water. The analysis was started prior to the 2011 start of the Syrian war in order to study the initial distribution of land use classes as well as the water depletion processes before any change in the basin. It shows that more than half of the exploitable water is not consumed within the basin and depleted outside. In contrast, most of the water consumed within the basin is wasted and depleted in a non-beneficial way. Roughly 35% of the cultivated area shown to be irrigated through withdrawals which exceed the capacity of the source. This result reflects the high abstraction rates from groundwater via a large number of unlicensed wells mostly located at the Syrian side. This study also detect a deficiency in the water balance of the Yarmouk River. The findings are relevant to sustainable management not only for water-dependent sectors but also for geopolitical stability among the riparian countries. In this way, open- access remote sensing derived data can provide useful information about the status of water resources especially when ground measurements are poor or absent.</p><p> </p><p>Keywords: Yarmouk, Water Accounting Plus, IWM, Irrigated crops, WAPOR.</p>


Sign in / Sign up

Export Citation Format

Share Document