scholarly journals The Short Grit Scale (GRIT-S) does not Relate to Acute Muscular Endurance Performance

2021 ◽  
Vol 78 (1) ◽  
pp. 263-269
Author(s):  
Michael H. Haischer ◽  
Daniel M. Cooke ◽  
Joseph P. Carzoli ◽  
Trevor K. Johnson ◽  
Amber M. Shipherd ◽  
...  

Abstract Grit has been previously presented as a personality trait that reflects an individual’s perseverance of effort and consistency of interest for achieving their long-term goals. In resistance training this could mean that a “grittier” individual may perform more repetitions at a given intensity as they are better able to overcome metabolic and neuromuscular fatigue. Thus, the purpose of this study was to examine if grit was related to back squat muscular endurance performance. Fifty-eight resistance-trained males and females volunteered for participation (age = 23±3 yrs; body height = 172.53 ± 8.64 cm; body mass = 80.64 ± 6.49 kg). The grit of each participant was assessed via the Short Grit Scale (GRIT-S), and muscular endurance performance was tested via completion of a back squat set to volitional failure at 70% of the participant’s one-repetition maximum. Spearman rho or Pearson’s correlations, depending on normality, were used with 1000 bootstrapped replicate samples and revealed no relationship between GRIT-S scores (3.78 ± 0.52) and repetitions performed (14 ± 4) in a combined cohort of all 58 individuals (ρ = -0.051), males only (r = 0.057) or females only (ρ = -0.441). Supplementary investigation of the data also showed that the five “best” performers (i.e. the five individuals who performed the most repetitions) tended to have lower GRIT-S scores than the five “worst” performers. The results of the current study suggest that the GRIT-S has limited value in the context of muscular endurance performance. The skewed range of GRIT-S scores (2.75-5.0) observed in this investigation, also highlights the potential for social desirability to bias one’s self-perception of grit.

Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1912 ◽  
Author(s):  
Antonio Ranchal-Sanchez ◽  
Victor Manuel Diaz-Bernier ◽  
Candelaria Alonso De La Florida-Villagran ◽  
Francisco Jesus Llorente-Cantarero ◽  
Julian Campos-Perez ◽  
...  

The ingestion of beetroot juice (BJ) has been associated with improvements in physical performance in endurance sports, however the literature on resistance training (RT) is scarce. The aim of this study was to investigate the acute effects of BJ compared to a placebo (PLA) on muscular endurance and movement concentric velocity during RT. Twelve healthy men performed an incremental RT test (back squat and bench press) with three sets, at 60%, 70%, and 80% of their repetition maximum (1-RM). Movement velocity variables, total number of repetitions performed until concentric failure, blood lactate, and ratings of perceived effort post-training were measured. A higher number of repetitions were recorded with BJ compared to those with PLA (13.8 ± 14.4; p < 0.01; effect size (ES) = 0.6). Differences were found at 60% 1-RM (9 ± 10; p < 0.05; ES = 0.61) and 70% 1-RM (3.1 ± 4.8; p < 0.05; ES = 0.49), however, no differences were found at 80% 1-RM (1.7 ± 1; p = 0.12; ES = 0.41). A greater number of repetitions was performed in back squat (13.4 ± 13; p < 0.01; ES = 0.77), but no differences were observed in bench press (0.4 ± 5.1; p = 0.785; ES = 0.03). No differences were found for the rest of the variables (p > 0.05). Acute supplementation of BJ improved muscular endurance performance in RT.


Author(s):  
Madison Pearson ◽  
Amador García-Ramos ◽  
Matthew Morrison ◽  
Carlos Ramirez-Lopez ◽  
Nicholas Dalton-Barron ◽  
...  

Exercise velocity and relative velocity loss thresholds (VLTs) are commonly used in velocity-based resistance training. This study aims to quantify the between-day reliability of 10%, 20%, and 30% VLTs on kinetic and kinematic outputs, changes in external load, and repetition characteristics in well-trained athletes. Using a repeated, counter-balanced crossover design, twelve semi-professional athletes completed five sets of the back squat with an external load corresponding to a mean concentric velocity of ~0.70 m·s−1 and a VLT applied. The testing sessions were repeated after four weeks of unstructured training to assess the long-term reliability of each VLT. A coefficient of variation (CV) <10% was used to classify outputs as reliable. Kinetic and kinematic outputs and external load were largely reliable, with only peak power during sets 2–5 within the 10% VLT condition demonstrating a CV >10% (CV: 11.14–14.92%). Alternatively, the repetitions completed within each set showed large variation (CV: 18.92–67.49%). These findings demonstrate that by utilizing VLTs, kinetic and kinematic outputs can be prescribed and replicated across training mesocycles. Thus, for practitioners wishing to reliably control the kinetic and kinematic stimulus that is being applied to their athletes, it is advised that a velocity-based approach is used.


2014 ◽  
Vol 116 (5) ◽  
pp. 560-569 ◽  
Author(s):  
Jorge Granados ◽  
Trevor L. Gillum ◽  
Kevin M. Christmas ◽  
Matthew R. Kuennen

Prohormone supplements (PS) are recognized not to impart anabolic or ergogenic effects in men, but the research supporting these conclusions is dated. The Anabolic Steroid Control Act was amended in 2004 to classify androstenedione and 17 additional anabolic compounds as controlled substances. The viability of PS that entered the market after that time have not been evaluated. Seventeen resistance-trained men (23 ± 1 yr; 13.1 ± 1.5% body fat) were randomly assigned to receive either 330 mg/day of 3β-hydroxy-5α-androst-1-en-17-one (Prohormone; n = 9) or sugar (Placebo; n = 8) per os and complete a 4-wk (16 session) structured resistance-training program. Body composition, muscular strength, circulating lipids, and markers of liver and kidney dysfunction were assessed at study onset and termination. Prohormone increased lean body mass by 6.3 ± 1.2%, decreased fat body mass by 24.6 ± 7.1%, and increased their back squat one repetition maximum and competition total by 14.3 ± 1.5 and 12.8 ± 1.1%, respectively. These improvements exceeded ( P < 0.05) Placebo, which increased lean body mass by 0.5 ± 0.8%, reduced fat body mass by 9.5 ± 3.6%, and increased back squat one repetition maximum and competition total by 5.7 ± 1.7 and 5.9 ± 1.7%, respectively. Prohormone also experienced multiple adverse effects. These included a 38.7 ± 4.0% reduction in HDL ( P < 0.01), a 32.8 ± 15.05% elevation in LDL ( P < 0.01), and elevations of 120.0 ± 22.6 and 77.4 ± 12.0% in LDL-to-HDL and cholesterol-to-HDL ratios, respectively (both P < 0.01). Prohormone also exhibited elevations in serum creatinine (19.6 ± 4.3%; P < 0.01) and aspartate transaminase (113.8 ± 61.1%; P = 0.05), as well as reductions in serum albumin (5.1 ± 1.9%; P = 0.04), alkaline phosphatase (16.4 ± 4.7%; P = 0.04), and glomerular filtration rate (18.0 ± 3.3%; P = 0.04). None of these values changed (all P > 0.05) in Placebo. The oral PS 3β-hydroxy-5α-androst-1-en-17-one improves body composition and muscular strength. However, these changes come at a significant cost. Cardiovascular health and liver function are particularly compromised. Given these findings, we feel the harm associated with this particular PS outweighs any potential benefit.


Author(s):  
Raci Karayigit ◽  
Ajmol Ali ◽  
Sajjad Rezaei ◽  
Gulfem Ersoz ◽  
Angel Lago-Rodriguez ◽  
...  

Abstract Background Carbohydrate (CHO) and caffeine (CAF) mouth rinsing have been shown to enhance endurance and sprint performance. However, the effects of CHO and CAF mouth rinsing on muscular and cognitive performance in comparison between male and female athletes are less well-established. The aim of this study was to examine the effect of CHO and CAF rinsing on squat and bench press 1 repetition maximum (1-RM) strength, 3 sets of 40% of 1-RM muscular endurance and cognitive performance in both male and female athletes. Methods Thirteen male and fourteen female resistance-trained participants completed four testing sessions following the rinsing of 25 ml of i) 6% of CHO (1.5 g); ii) 2% CAF (500 mg), iii) combined CHO and CAF (CHOCAF) solutions or iv) water (PLA) for 10 s. Heart rate (HR), felt arousal (FA), ratings of perceived exertion (RPE) and glucose (GLU) were recorded throughout the test protocol. Results There were no significant differences in squat and bench press 1-RM, HR, RPE and GLU (p > 0.05) for males and females, respectively. FA was significantly increased with CAF (p = 0.04, p = 0.01) and CHOCAF (p = 0.03, p = 0.01) condition in both males and females, respectively. Squat endurance performance in the first set was significantly increased with CHOCAF condition compared to PLA in both males (p = 0.01) and females (p = 0.02). Bench press endurance was similar for all conditions in both genders (p > 0.05). Cognitive performance was significantly increased with CHOCAF compared to PLA in males (p = 0.03) and females (p = 0.02). Conclusion Combined CHO and CAF mouth rinsing significantly improved lower body muscular endurance and cognitive performance in both males and females.


2021 ◽  
Vol 10 (16) ◽  
pp. 3492
Author(s):  
Roman Jurik ◽  
Aleksandra Żebrowska ◽  
Petr Stastny

Resistance training (RT) and exercise is useful for preventing cardiovascular disease, systolic hypertension and stroke, which are associated with the stiffening of the larger central arterial system. The aim of this systematic review was to (a) understand the changes in arterial stiffness (AS) in various parts of the body measurement after acute RT bout and long-term RT, and (b) to determine the impact of exercise intensity on these changes in healthy individuals. A systematic computerized search was performed according to the PRISMA in PubMed, Scopus and Google Scholar with final selection of 23 studies. An acute RT bout led to a temporary increase in pulse wave velocity (PWV) regardless of the measurement method or intensity. A long-term RT at above an 80% repetition maximum (RM) have an ambiguous effect on PWV. A low-intensity RT or whole-body vibration training program decreased carotid–femoral PWV and brachial–ankle PWV (d = 1.02) to between 0.7 ± 1.4 ms−1 (p < 0.05) and 1.3 ± 1.07 ms−1 (p < 0.05) and improved other cardiac functions. A long-term RT of moderate (60–80% 1RM) or low intensity (<60% one-repetition maximum (1RM)) can decrease AS. Low and moderate intensity RT is beneficial to reduce high AS to prevent cardiovascular diseases.


2016 ◽  
Vol 11 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Iñigo Mujika ◽  
Bent R. Rønnestad ◽  
David T. Martin

Despite early and ongoing debate among athletes, coaches, and sport scientists, it is likely that resistance training for endurance cyclists can be tolerated, promotes desired adaptations that support training, and can directly improve performance. Lower-body heavy strength training performed in addition to endurance-cycling training can improve both short- and long-term endurance performance. Strength-maintenance training is essential to retain strength gains during the competition season. Competitive female cyclists with greater lower-body lean mass (LBLM) tend to have ~4–9% higher maximum mean power per kg LBLM over 1 s to 10 min. Such relationships enable optimal body composition to be modeled. Resistance training off the bike may be particularly useful for modifying LBLM, whereas more cycling-specific training strategies like eccentric cycling and single-leg cycling with a counterweight have not been thoughtfully investigated in well-trained cyclists. Potential mechanisms for improved endurance include postponed activation of less efficient type II muscle fibers, conversion of type IIX fibers into more fatigue-resistant IIa fibers, and increased muscle mass and rate of force development.


2017 ◽  
Vol 42 (2) ◽  
pp. 193-201 ◽  
Author(s):  
James Steele ◽  
James P. Fisher ◽  
Ari R. Assunção ◽  
Martim Bottaro ◽  
Paulo Gentil

This study compared high- (HL) and low-load (LL) resistance training (RT) on strength, absolute endurance, volume-load, and their relationships in untrained adolescents. Thirty-three untrained adolescents of both sexes (males, n = 17; females, n = 16; 14 ± 1 years) were randomly assigned into either (i) HL (n = 17): performing 3 sets of 4–6 repetitions to momentary concentric failure; or (ii) LL (n = 16): performing 2 sets of 12–15 repetitions to momentary concentric failure. RT was performed for 2×/week for 9 weeks. Change in maximum strength (1 repetition maximum) and absolute muscular endurance for barbell bench press was assessed. Weekly volume-load was calculated as sets (n) × repetitions (n) × load (kg). Ninety-five percent confidence intervals (CIs) revealed that both groups significantly increased in strength and absolute endurance with large effect sizes (d = 1.51–1.66). There were no between-group differences for change in strength or absolute endurance. Ninety-five percent CIs revealed that both groups significantly increased in weekly volume-load with large effect sizes (HL = 1.66, LL = 1.02). There were no between-group differences for change in volume-load though average weekly volume-load was significantly greater for LL (p < 0.001). Significant Pearson’s correlations were found for the HL group between average weekly volume-load and both strength (r = 0.650, p = 0.005) and absolute endurance (r = 0.552, p = 0.022) increases. Strength and absolute endurance increases do not differ between HL and LL conditions in adolescents when performed to momentary concentric failure. Under HL conditions greater weekly volume-load is associated with greater strength and absolute endurance increases.


Author(s):  
Jaime Gil-Cabrera ◽  
Pedro L. Valenzuela ◽  
Lidia B. Alejo ◽  
Eduardo Talavera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To compare the effectiveness of optimum power load training (OPT, training with an individualized load and repetitions that maximize power output) and traditional resistance training (TRT, same number of repetitions and relative load for all individuals) in professional cyclists. Methods: Participants (19 [1] y, peak oxygen uptake 75.5 [6] mL/kg/min) were randomly assigned to 8 weeks (2 sessions per week) of TRT (n = 11) or OPT (n = 9), during which they maintained their usual cycle training schedule. Training loads were continuously registered, and measures of muscle strength/power (1-repetition maximum and maximum mean propulsive power on the squat, hip thrust, and lunge exercises), body composition (assessed by dual-energy X-ray absorptiometry), and endurance performance (assessed on both an incremental test and an 8-min time trial) were collected before and at the end of the intervention. Results: OPT resulted in a lower average intensity (percentage of 1-repetition maximum) during resistance training sessions for all exercises (P < .01), but no differences were found for overall training loads during resistance or cycling sessions (P > .05). Both programs led to significant improvements in all strength/power-related parameters, muscle mass (with no changes in total body mass but a decreased fat mass), and time-trial performance (all Ps < .05). A trend toward increased power output at the respiratory compensation point was also found (P = .056 and .066 for TRT and OPT, respectively). No between-groups differences were noted for any outcome (P > .05). Conclusion: The addition of either TRT or OPT to an endurance training regimen of elite cyclists results in similar improvements of body composition, muscle strength/power, and endurance performance.


2005 ◽  
Vol 17 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Avery D. Faigenbaum ◽  
Laurie Milliken ◽  
Lucas Moulton ◽  
Wayne L. Westcott

The purpose of this study was to compare early muscular fitness adaptations in children in response to low repetition maximum (LRM) and high repetition maximum (HRM) resistance training. Twenty-three girls and 20 boys between the ages of 8.0 and 12.3 years (mean age 10.6 ± 1.3 years) volunteered to participate in this study. Children performed one set of 6 to 10 RM (n = 12) or one set of 15 to 20 RM (n = 19) on child-size exercise machines twice weekly over 8 weeks. Children in the control group (n = 12) did not resistance train. Maximum strength (1 RM) on the chest press, local muscular endurance (15 RM) on the leg press, long jump, vertical jump, and v-sit flexibility were assessed at baseline and posttraining. The LRM and HRM groups made significantly greater gains in 1-RM strength (21% and 23%, respectively) as compared with the control group (1%). Only the HRM group made significantly greater gains in 15-RM local muscular endurance (42%) and flexibility (15%) than that recorded in the control group (4% and 5%, respectively). If children perform one set per exercise as part of an introductory resistance training program, these findings favor the prescription of a higher RM training range.


1988 ◽  
Vol 65 (5) ◽  
pp. 2285-2290 ◽  
Author(s):  
R. C. Hickson ◽  
B. A. Dvorak ◽  
E. M. Gorostiaga ◽  
T. T. Kurowski ◽  
C. Foster

The impact of adding heavy-resistance training to increase leg-muscle strength was studied in eight cycling- and running-trained subjects who were already at a steady-state level of performance. Strength training was performed 3 days/wk for 10 wk, whereas endurance training remained constant during this phase. After 10 wk, leg strength was increased by an average of 30%, but thigh girth and biopsied vastus lateralis muscle fiber areas (fast and slow twitch) and citrate synthase activities were unchanged. Maximal O2 uptake (VO2max) was also unchanged by heavy-resistance training during cycling (55 ml.kg-1.min-1) and treadmill running (60 ml.kg-1.min-1); however, short-term endurance (4-8 min) was increased by 11 and 13% (P less than 0.05) during cycling and running, respectively. Long-term cycling to exhaustion at 80% VO2max increased from 71 to 85 min (P less than 0.05) after the addition of strength training, whereas long-term running (10 km times) results were inconclusive. These data do not demonstrate any negative performance effects of adding heavy-resistance training to ongoing endurance-training regimens. They indicate that certain types of endurance performance, particularly those requiring fast-twitch fiber recruitment, can be improved by strength-training supplementation.


Sign in / Sign up

Export Citation Format

Share Document