scholarly journals Functional nano-structuring of thin silicon nitride membranes

2020 ◽  
Vol 71 (2) ◽  
pp. 127-130
Author(s):  
Milan Matějka ◽  
Stanislav Krátký ◽  
Tomáš Řiháček ◽  
Alexandr Knápek ◽  
Vladimír Kolařík

AbstractThe paper describes the development and production of a nano-optical device consisting of a nano-perforated layer of silicon nitride stretched in a single-crystal silicon frame using electron beam lithography (EBL) and reactive ion etching (RIE) techniques. Procedures for transferring nanostructures to the nitride layer are described, starting with the preparation of a metallic mask layer by physical vapor deposition (PVD), high-resolution pattern recording technique using EBL and the transfer of the motif into the functional layer using the RIE technique. Theoretical aspects are summarized including technological issues, achieved results and application potential of patterned silicon nitride membranes.

Author(s):  
A. K. Datye ◽  
S. S. Tsao ◽  
D. R. Myers

High fluence ion implantation of nitrogen ions in silicon is currently of great interest in the formation of silicon on insulator (SOI) structures. After ion implantation, the single crystal silicon water usually exhibits a highly defective surface layer followed by an amorphous layer corresponding to the peak of the nitrogen implant profile. Annealing the sample at ∽ 1200 C yields a buried layer of silicon nitride underneath a top layer of single crystal silicon. The Quality of the single crystal silicon, buried nitride and the silicon/silicon nitride interface is of paramount importance from the standpoint of device design. We have used high resolution cross section TEM to examine the Si/nitride interface and the buried nitride layer.


1994 ◽  
Vol 9 (9) ◽  
pp. 2341-2348 ◽  
Author(s):  
K.J. Grannen ◽  
F. Xiong ◽  
R.P.H. Chang

Crystalline thin films of silicon nitride have been grown on a variety of substrates by microwave plasma-enhanced chemical vapor deposition using N2, O2, and CH4 gases at a temperature of 800 °C. X-ray diffraction and Rutherford backscattering measurements indicate the deposits are stoichiometric silicon nitride with varying amounts of the α and β phases. Scanning electron microscopy imaging indicates β-Si3N4 possesses sixfold symmetry with particle sizes in the submicron range. In one experiment, the silicon necessary for growth comes from the single crystal silicon substrate due to etching/sputtering by the nitrogen plasma. The dependence of the grain size on the methane concentration is investigated. In another experiment, an organo-silicon source, methoxytrimethylsilane, is used to grow silicon nitride with controlled introduction of the silicon necessary for growth. Thin crystalline films are deposited at rates of 0.1 μm/h as determined by profilometry. A growth mechanism for both cases is proposed.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yiingqi Shang ◽  
Hongquan Zhang ◽  
Yan Zhang

Aimed at the problem of the small wet etching depth in sapphire microstructure processing technology, a multilayer composite mask layer is proposed. The thickness of the mask layer is studied, combined with the corrosion rate of different materials on sapphire in the sapphire etching solution, different mask layers are selected for the corrosion test on the sapphire sheet, and then the corrosion experiment is carried out. The results show that at 250 °C, the choice is relatively high when PECVD (Plasma Enhanced Chemical Vapor Deposition) is used to make a double-layer composite film of silicon dioxide and silicon nitride. When the temperature rises to 300 °C, the selection ratio of the silicon dioxide layer grown by PECVD is much greater than that of the silicon nitride layer. Therefore, under high temperature conditions, a certain thickness of silicon dioxide can be used as a mask layer for deep cavity corrosion.


1988 ◽  
Vol 131 ◽  
Author(s):  
Wei Lee ◽  
Leonard V. Interrante ◽  
Corrina Czekaj ◽  
John Hudson ◽  
Klaus Lenz ◽  
...  

ABSTRACTDense silicon carbide films have been prepared by low pressure chemical vapor deposition (LPCVD) using a volatile, heterocyclic, carbosilane precursor, MeHSiCH2SiCH2Me(CH2SiMeH2). At deposition temperatures between 700 and 800° C, polycrystalline, stoichiometric SiC films have been deposited on single crystal silicon and fused silica substrates. Optical microscopy and SEM analyses indicated formation of a transparent yellow film with a uniform, featureless surface and good adherence to the Si(lll) substrate. The results of preliminary studies of the nature of the gaseous by-products of the CVD processes and ultrahigh vacuum physisorption and decomposition of the precursor on Si(100) substrates are discussed.


Sign in / Sign up

Export Citation Format

Share Document