scholarly journals Phycoremediation of Wastewater: Heavy Metal and Nutrient Removal Processes

2014 ◽  
Vol 25 (4) ◽  
pp. 51-54
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Lucyna Sławik-Dembiczak ◽  
Bartłomiej Bańka

Abstract Phycoremediation is the use of algae for the removal or biotrans-formation of pollutants from wastewater. The study is a novel at-tempt to integrate nutrient (N and P) removal and some heavy met-als (iron, manganese and zinc) bioaccumulation from municipal wastewater using two microalgae species: Chlorella vulgaris and Scenedesmus armatus. The Chlorella vulgaris showed higher re-moval of total nitrogen (TN) both in influent and effluent waste water than Scenedesmus armatus. Nevertheless, more than 51% of total phosphorus (TP) in effluent and 36% in influent wastewaters were removed by Scenedesmus armatus. More efficient microalga in heavy metal removal in influent wastewater was Scenedesmus armatus. The results showed that Chlorella vulgaris was appropriate for TN removal and bioaccumulation of heavy metals from effluent wastewater. Nevertheless, Scenedesmus armatus was highly pref-erable for heavy metals removal from influent wastewater.

2001 ◽  
Vol 44 (10) ◽  
pp. 53-58 ◽  
Author(s):  
L. C. Aralp ◽  
A. Erdincler ◽  
T. T. Onay

Heavy metal concentration in sludge is one of the major obstacles for the application of sludge on land. There are various methods for the removal of heavy metals in sludge. Using sulfur oxidizing bacteria for microbiological removal of heavy metals from sludges is an outstanding option because of high metal solubilization rates and the low cost. In this study, bioleaching by indigenous sulfur oxidizing bacteria was applied to sludges generated from the co-treatment of municipal wastewater and leachate for the removal of selected heavy metals. Sulfur oxidizing bacteria were acclimated to activated sludge. The effect of the high organic content of leachate on the bioleaching process was investigated in four sets of sludges having different concentrations of leachate. Sludges in Sets A, B, C and D were obtained from co-treatment of wastewater and 3%, 5%, 7% and 10% (v/v) leachate respectively. The highest Cr, Ni and Fe solubilization was obtained from Set A. Sulfur oxidizing bacteria were totally inhibited in Set D that received the highest volume of leachate.


2012 ◽  
Vol 468-471 ◽  
pp. 2882-2890 ◽  
Author(s):  
R. H. Al Anbari ◽  
S. M. Alfatlawi ◽  
J. H. Albaidhani

Heavy metal removal by electrocoagulation using iron electrodes material was investigated in this paper. Several working parameters, such as pH, current density and heavy metal ions concentration were studied in an attempt to achieve a higher removal capacity. A simple and efficient treatment process for removal of heavy metals is essentially necessary. The performance of continuous flow electrocoagulation system, with reactor consists of a ladder series of twelve electrolytic cells, each cell containing stainless steel cathode and iron anode. The treatment of synthetic solutions containing Zn 2+,Cu 2+,Ni 2+,Cr 3+,Cd 2+ and Co 2+ ,has been investigated. Results showed that iron is very effective as sacrificial electrode material for heavy metals removal efficiency and cost points. Also it was concluded that the chromium has lower efficient removal as compared to zinc, copper and nickel. At the same time cadmium and cobalt have minimum removal efficiency.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1121
Author(s):  
Sylwan Ida ◽  
Thorin Eva

Resource reuse has become an important aspect of wastewater management. At present, use of sludge in agriculture is one of the major reuse routes. Conventional municipal wastewater treatment does not involve any designated process for removal of heavy metals, and these distribute mainly between effluent and sludge. Enhanced removal of heavy metals during primary treatment may decrease the heavy metal concentrations in both effluent and sludge from secondary treatment and promote long-term reuse of secondary sludge. This review considers heavy metal occurrence and removal during primary settling, together with possible treatment technologies for heavy metal removal in primary settlers and their theoretical performance. The variation in total heavy metal concentrations and dissolved fraction in raw municipal wastewater points to a need for site-specific assessments of appropriate technologies for improved heavy metal removal. Studies examining the heavy metal speciation beyond dissolved/particulate are few. Missing or disparate information on process parameters such as hydraulic retention time, pH and composition of return flows makes it hard to generalize the findings from studies concerning heavy metal removal in primary settlers. Coagulation/flocculation and use of low-cost sorbents were identified as the most promising methods for enhancing heavy metal removal during primary settling. Based on the available data on heavy metal speciation and removal during primary settling, sorption technologies may be most effective for enhancing the removal of Cu and Ni, while coagulation may be efficient for Cd, Cr, Cu, Pb, Zn and Hg removal (but not as efficient for Ni removal).


2012 ◽  
Vol 178-181 ◽  
pp. 507-511
Author(s):  
Zhi Min Zhang

The concentration of heavy metals in excess sludge from municipal wastewater treatment plants has restricted its convertion to soil fertilizer, so it is necessary to remove the heavy metals from sludge. In this article, the effects of heavy metal removal by some mineral acids such as HCl, H2SO4, H3PO4, HNO3 were analysed, when treating excess sludge from a second sediment tank in municipal wastewater treatment plants. To improve the treatment, a combination of H2O2 and acid was also investigated. Consequently, the difference of heavy metal removal among those acids was showed. Its removal of Hg by HNO3 was better than by other acids. Lower pH enhanced the dissolving of heavy metal, yet the removal of Cr was insensitive to the pH. Aided by H2O2, the removal by the acid was enhanced. The suitable dosage of H2O2 was specially related to the solid content of sludge, pH and the acid kind.


2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Siti Wahidah Puasa ◽  
Kamariah Noor Ismail ◽  
Muhammad Amarul Aliff Bin Mahadi ◽  
Nur Ain Zainuddin ◽  
Mohd Nazmi Mohd Mukelas

Wastewater produced from the electroplating industry generally consists of heavy metals mixture and organic materials that need to be treated before it can be discharged to the environment. Thus, the present investigation was focused on the selectivity removal of heavy metal mixtures consists of Copper (Cu), Cadmium (Cd), and Zinc (Zn). Several operating conditions, including the effect of pH and coagulant (FeCl3) dosage, were varied to find the best performance of heavy metal removal. Results show the efficiency of heavy metals removal for both wastewater characteristics were approximately 99%. The experimental data on the treatment of synthetic wastewater was plotted using polynomial regression (PR) via Excel software. The value of adjusted R2 obtained for the final concentration of Cu, Zn, and Cd after treatment were 0.6884, 0.9676, and 0.9283, respectively, which shows data were acceptably fitted for Cu and very well fitted for Zn and Cd. The coagulation/flocculation process performed on actual wastewater shows that the lowest final concentration of Cu, Zn, and Cd after treatment were 0.487, 1.232, and 0 mg/L respectively at pH of 12.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1830006 ◽  
Author(s):  
Nader Ghaffari Khaligh ◽  
Mohd Rafie Johan

The pollution of water due to the release of heavy metals are particularly problematic and supplies of clean water have become a major problem worldwide. The heavy metal ions can cause toxicities and serious side effects toward human health; therefore, these metal ions should be removed from water and wastewater. A variety of strategies have been developed for efficient heavy metal removal from waters. Adsorption/ion exchange strategy play a great important role in removing heavy metal ions due to their advantages. Nanomaterials are excellent adsorbents and extensive studies have been performed to remove heavy metals from wastewater by developing and using various nanomaterials. Recent developments for the heavy metals removal by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials in batch and flow systems are described in this review.


2021 ◽  
Vol 897 ◽  
pp. 109-115
Author(s):  
Sri Martini ◽  
Kiagus Ahmad Roni ◽  
Dian Kharismadewi ◽  
Erna Yuliwaty

This review article presents the usage of various animal bones such as chicken bone, fish bone, pig bone, camel bone, and cow bone as reliable biosorbent materials to remove heavy metals contained in contaminated water and wastewater. The sources and toxicity effects of heavy metal ions are also discussed properly. Then specific insights related to adsorption process and its influential factors along with the proven potentiality of selected biosorbents especially derived from animal bone are also explained. As the biosorbents are rich in particular organic and inorganic compounds and functional groups in nature, they play an important role in heavy metal removal from contaminated solutions. Overall, after conducting study reports on the literature, a brief conclusion can be drawn that animal bone waste has satisfactory efficacy as effective, efficient, and environmentally friendly sorbent material.


RSC Advances ◽  
2019 ◽  
Vol 9 (40) ◽  
pp. 22883-22890 ◽  
Author(s):  
Dariela Núñez ◽  
Jon Ander Serrano ◽  
Aritz Mancisidor ◽  
Elizabeth Elgueta ◽  
Kokkarachedu Varaprasad ◽  
...  

Removal of Pb(ii), Cu(ii) and Cd(ii) was attained using hydroxyapatite nanocrystals derived from clam shells, in batch and column experiments.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1559
Author(s):  
Ida Sylwan ◽  
Hanna Runtti ◽  
Lena Johansson Westholm ◽  
Henrik Romar ◽  
Eva Thorin

Municipal wastewater management causes metal exposure to humans and the environment. Targeted metal removal is suggested to reduce metal loads during sludge reuse and release of effluent to receiving waters. Biochar is considered a low-cost sorbent with high sorption capacity for heavy metals. In this study, heavy metal sorption to sludge-derived biochar (SDBC) was investigated through batch experiments and modeling and compared to that of wood-derived biochar (WDBC) and activated carbon (AC). The aim was to investigate the sorption efficiency at metal concentrations comparable to those in municipal wastewater (<1 mg/L), for which experimental data are lacking and isotherm models have not been verified in previous works. Pb2+ removal of up to 83% was demonstrated at concentrations comparable to those in municipal wastewater, at pH 2. SDBC showed superior Pb2+ sorption capacity (maximum ~2 mg/g at pH 2) compared to WDBC and AC (<0 and (3.5 ± 0.4) × 10−3 mg/g, respectively); however, at the lowest concentration investigated (0.005 mg/L), SDBC released Pb2+. The potential risk of release of other heavy metals (i.e., Ni, Cd, Cu, and Zn) needs to be further examined. The sorption capacity of SDBC over a metal concentration span of 0.005–150 mg Pb2+/L could be predicted with the Redlich–Peterson model. It was shown that experimental data at concentrations comparable to those in municipal wastewater are necessary to accurately model and predict the sorption capacity of SDBC at these concentrations.


2018 ◽  
Vol 6 (28) ◽  
pp. 13624-13632 ◽  
Author(s):  
He Ding ◽  
Yang Chen ◽  
Tianyi Fu ◽  
Peng Bai ◽  
Xianghai Guo

Nanosheet-based magadiites are promising adsorbents with controlled interlayer space and a well-defined 2D structure, which make them new candidates for heavy metal removal.


Sign in / Sign up

Export Citation Format

Share Document