scholarly journals Effects of coupling agent on antioxidant properties and structure of PP/cotton stalk lignin composites

2020 ◽  
Vol 22 (2) ◽  
pp. 78-85
Author(s):  
Mingyu He ◽  
Dilhumar Musajian ◽  
Gvlmira Hasan ◽  
Gongbo Hou ◽  
Mamatjan Yimit

AbstractIn this paper, the effects of coupling agent and lignin extracted from waste cotton stalks in Xinjiang on thermal-oxygen aging properties of polypropylene (PP) composites were studied. The melt index test and indoor thermal oxygen aging test was carried out on the samples treated with coupling agent. The mechanical properties, surface micromorphology, rheological properties and element composition of the materials before and after 30 days of aging were studied. The results showed that the titanate coupling agent was the best for improving the melt index and mechanical properties of PP/cotton stalk lignin composites. After the 30-day thermal oxygen aging test, the samples with 2% lignin had the best impact strength and retention rate of fracture elongation, reaching 68.9% and 77.3% respectively. The sample with 3% lignin content had the smoothen surface, no crack appeared. After aging, the increase of C=O was the least, and the crystal peak area decreased less.

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Hamid Kaddami ◽  
Carsten Becker-Willinger ◽  
Helmut Schmid

AbstractTransmission electron microscopy (TEM), small angle X-ray (SAXS) and dynamical mechanical thermal analysis (DMTA) were used to characterize the morphology and thermo-mechanical properties of hybrid organic inorganic materials. These materials were based on polyimide (PI) and tetraethoxysilane (TEOS). Polyimide polymer is prepared from 4,4’-oxydianiline (ODA) 2,2-Bis(3- amino-4-hydroxyphenyl) hexafluoro-propane (6F-OHDA) pyromellitic dianhydride (PMDA) polyamic polymer. In one family of hybrid materials 3- isocyanatopropyltriethoxysilane (ICTS) is used as coupling agent in order to enhance the interfacial interaction between polyimide and silica. It was possible to modulate the morphology as well as the optical and thermo-mechanical properties of these hybrid materials depending on the formulation used. TEM and SAXS analysis indicated that silica domains on the nanoscale level are obtained when coupling agent is used in the formulation. Additionally the TEM and SAXS analysis indicated that miscibility of the organic and the inorganic phases on the molecular scale is obtained in the hybrid films when ICTS as coupling agent is added to the polyamic acid. These techniques show a fractal structure of the hybrid materials with coupling agent. This was confirmed with DMTA analysis which shows very high temperature relaxation (more than 450°C). From this result it could be derived that the addition of ICTS causes a morphological transformation from discrete particulate microstructure to fine interpenetrated or co-continuous phases. The intimate miscibility of the phases is accompanied at the same time by the amelioration of thermo-mechanical properties of the hybrid films.


2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.


2018 ◽  
Vol 26 (8) ◽  
pp. 699-709 ◽  
Author(s):  
José Alexandre Simão ◽  
José Manoel Marconcini ◽  
Luiz Henrique Capparelli Mattoso ◽  
Anand Ramesh Sanadi

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3813
Author(s):  
Bowen Lin ◽  
Chengqiang Li ◽  
Fangping Chen ◽  
Changsheng Liu

Starch/PBAT blown films with high ultraviolet aging resistance and excellent mechanical properties were prepared by introducing lignin with polyurethane prepolymer (PUP) as a starch modifier and physical compatibilizer and 4,4′–methylene diphenyl diisocyanate (MDI) as a crosslinker. Starch was modified by reacting the NCO groups of the PUP with the OH groups of the starch to form a carbamate bond. The mechanical properties, hydrophobic properties, ultraviolet barrier, ultraviolet aging properties and microscopic morphology of starch/PBAT films with different contents of lignin were investigated. The results showed that the starch/PBAT films were blown continuously. The addition of lignin did not decrease the mechanical properties. On the contrary, the film with 1% lignin possessed the excellent mechanical properties with longitudinal tensile strength of 15.87 MPa and the elongation at a break of 602.21%. In addition, the higher the lignin content, the better the UV blocking effect. The introduction of lignin did not affect the crystalline properties but improved the hydrophilic properties and sealing strength of the high starch content composite films.


2021 ◽  
Author(s):  
Yanhong Jin ◽  
Yuanyuan Jing ◽  
Wenxin Hu ◽  
Jiaxian Lin ◽  
Yu Cheng ◽  
...  

Abstract Lignin has been used as a sustainable and eco-friendly filler in composite fibers. However, lignin aggregation occurred at high lignin content, which significantly hindered the further enhancement of fiber performance. The incorporation of graphene oxide (GO) enhanced the mechanical properties of the lignin/poly(vinyl alcohol) (PVA) fibers and affected their structure. With the GO content increasing from 0 to 0.2%, the tensile strength of 5% lignin/PVA fibers increased from 491 MPa to 631 MPa, and Young's modulus increased from 5.91 GPa to 6.61 GPa. GO reinforced 30% lignin/PVA fibers also showed the same trend. The tensile strength increased from 455 MPa to 553 MPa, and Young's modulus increased from 5.39 GPa to 7 GPa. The best mechanical performance was observed in PVA fibers containing 5% lignin and 0.2% GO, which had an average tensile strength of 631 MPa and a Young’s modulus of 6.61 GPa. The toughness values of these fibers are between 9.9-15.6 J/g, and the fibrillar and ductile fracture microstructure were observed. Structure analysis of fibers showed that GO reinforced 5% lignin/PVA fibers had higher crystallinity, and evidence of hydrogen bonding among GO, lignin, and PVA in the gel fibers was revealed. Further, water resistance and swelling behavior of composite PVA fibers were studied to further evidence the structure change of composite fibers.


Sign in / Sign up

Export Citation Format

Share Document