scholarly journals Use of Modelling Approach in evaluation of Fractured Shale Aquifers for irrigation purpose; a case study of Oju, Lower Benue Trough Nigeria

2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
M. O. Eyankware ◽  
C. Ogwah

AbstractGroundwater samples were evaluated for irrigation purpose, within selected part of Oju area of Benue State, Nigeria. The study area lies within Asu River Group of the Lower Benue Trough, southern part of Nigeria. Physicochemical parameters were analyzed using APHA, 2012 method. Results from the study showed that pH falls within slightly basic to acidic, with Ec value ranging from 127 to 760 μS/cm, SSP ranges from 1.53 to 43.78, Sodium Percentage ranges from 1.55 to 77.8 %, Kelly Ratio ranges from 0.01 to 0.77, Magnesium Absorption Ratio ranges from 0.00 to 61.98 and total hardness Total Hardness ranges from 72.00 to 425.5 within the study area. The above listed parameters were below various permissible standard value for irrigation except for MAR at LBT/04, Na % at LBT/09, 13 and 14, SAR at 01 and 04 and TH at LBT/04 that were slightly above various permissible standard values. From Gibbs plot it was observed that rock dominance is the major factor that influences groundwater except for few sampling point were precipitation dominance was observed to have influence on groundwater within the study area.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Moses Oghenenyoreme Eyankware ◽  
Philip Njoku Obasi ◽  
Christoper Ogwah

Groundwater studies were carried out between two geological groups to evaluate factors that influences groundwater geochemistry. To achieve this, 30 groundwater samples were collected. Parameters such as pH, Electrical Conductivity (Ec), Total Dissolved Solids (TDS), Total Hardness (TH), and hydrochemical characteristics (Na2+, K+ , Ca2+, Mg2+, HCO3¯, NO3¯, Cl¯, CO23¯, and SO42¯) of groundwater were determined. Findings revealed that the pH value for Asu River Group ranges from 5.3 to 7.5, and that of Eze Aku Group ranges from 4.1 to 7.9. It was observed that areas around the mines had low pH values. Analyzed results that were obtained were interpreted using various hydrogeochemical models. Parson plots reflected that groundwater within the two geological groups fell within Ca˗Mg˗SO4 and Ca˗Mg˗Cl. Results from End˗member plots showed that 96% of groundwater samples analyzed were categorized under carbonate weathering, 4% fell silicate weathering. Gibbs plots revealed that interactions between groundwater and surrounding host rocks are mostly the main processes responsible for chemical characteristics of groundwater, Diamond field plots suggested that groundwater within the study were categorized to be high in Ca + Mg & SO4 + Cl, the plot of Ca2+/(HCO3¯+SO42¯) against Na+/Cl¯ revealed that groundwater was considered to be within the natural state for the two group. The plot of TDS against TH showed that groundwater is classified as soft freshwater. The study revealed there was no significant difference between factors that influence groundwater within the two geological.


2010 ◽  
Vol 7 (3) ◽  
pp. 1033-1039 ◽  
Author(s):  
P. N. Palanisamy ◽  
S. K. Kavitha

Groundwater samples were collected in Erode city, Tamilnadu, from an area having large number of textile dyeing units. Though people residing in this area use river water supplied by local bodies as their major source for drinking, groundwater is also used as complementary source. The samples collected were subjected to systematic analysis using the standard methods and procedures. The values obtained for different physicochemical parameters were compared with the standard values given by ISI/ WHO. Variations in many physicochemical parameters were observed for most of the samples when compared to the standard values. More than half of the samples collected had their EC, TDS, total hardness, calcium, magnesium, sulphate and chloride exceeding their acceptable limits. This attempt has been made to determine the quality of groundwater in the study area confirms the deterioration of groundwater quality in the area and calls for some effective measures to be taken urgently to minimize the adverse impacts that may occur due to the contamination of groundwater.


2020 ◽  
Vol 108 (6) ◽  
pp. 499-508
Author(s):  
Tuba Özdemir Öge ◽  
Firdevs Banu Özdemir

AbstractIn this study, radon concentration measurements and chemical analyses of groundwater samples were performed in four sampling locations of Bartın Province of Western Black Sea Region, Turkey. 222Rn analysis was carried out in groundwater samples with liquid scintillation counting system in accordance with ASTM D5072 standard. The pH, total hardness, alkalinity and dissolved oxygen parameters of the groundwater samples were also determined. The radon concentrations for the water samples ranged between <3.00 Bq/L–12.03 Bq/L. Thirty eight percentage of the samples slightly exceeded the permissible limit of 11.1 Bq/L specified by USEPA for drinking waters. The annual effective doses of groundwater samples were calculated in the range of 7.41–30.74 μSv/y for ingestion of water (Ew.Ig), and in the range of 7.31–30.31 μSv/y for inhalation of radon released from water (Ew.Ih). The total calculated annual effective doses due to ingestion and inhalation were found to be below the limit value of 100 μSv/y specified by the World Health Organization (WHO). The radioactivity measurement results significantly varied for three sampling points but not for one sampling point on two different measurement dates, which is attributed to the differences in geological structure. The chemical analysis results, except for total hardness in two sampling points, were within the permissible limits specified by international standards.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Kshitindra Kr. Singh ◽  
Geeta Tewari ◽  
Suresh Kumar

In the present study, the groundwater quality for suitability in agriculture from Udham Singh Nagar district, Uttarakhand, has been evaluated. A total of 50 groundwater samples have been collected and analysed for pH, EC, TH, HCO3−, CO32−, Cl−, SO42−, NO3–, Ca2+, Mg2+, Na+ and K+. To assess the groundwater quality for irrigation purpose, parameters like sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium hazards (MHs), permeability index (PI), and chloroalkaline index (CAI) values have been calculated. In USSL diagram, most of the groundwater samples fall in the C2S1 category and were safe for irrigation purpose. Only seven groundwater samples fall in the C3S1 category, indicating medium to high salinity which is safe for irrigation purpose for all types of soils but with limited care of exchangeable sodium. On the basis of RSC, all groundwater samples were observed to be suitable for irrigation purpose. Piper diagram indicated that 50% of the groundwater samples belonged to the Mg2+-Ca2+-HCO3− type and 48% was classified as the Ca2+-Mg2+-Cl− type. Durov diagram suggested possibilities of ion mixing and simple dissolution of ions from polluted soil.


Author(s):  
Sana Nasir ◽  
Abdul Samad ◽  
Waqar Majeed ◽  
Shahla Nargis ◽  
Uzma Ramzan ◽  
...  

The main sources of water are rain, surface and ground water. These resources are contaminated due to human and industrial activities. Both urban and rural areas, ground water is an eminent source of drinking water. The main objective of this study was to access the quality of ground water in Faisalabad city. From twelve different colonies of the Faisalabad water samples were collected to estimate their physiochemical parameters. The physiochemical parameters such as (pH, Electrical conductivity, Total dissolve solids, Calcium, Bi-carbonates, Total Hardness and chloride) were analyzed and their values were compared with the standard values given by the WHO. In majority of the colonies some parameters were found within permissible parameters of above standard such as pH and total hardness. But in few colonies EC, TDS, Bi-carbonates and chlorides values deviated with reference to the recommended values. On the completion of data physiochemical parameters of ground water, statistical analysis was applied. Descriptive statistics was carried out to evaluate the significant different between means of samples.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Moses Oghenenyoreme Eyankware ◽  
Ruth Oghenerukevwe Eyankware Ulkapa ◽  
Obinna Chigoziem Akakuru ◽  
Oghenegare Emmanuel Eyankware

Hydrochemical studies was carried out within two geological groups of  the Albian to Turonian in age to evaluate factors that influences hydrochemistry of groundwater. To achieve this, 30 groundwater samples were collected. Parameters such as pH, Electrical Conductivity (Ec), Total Dissolved Solids (TDS), Total Hardness (TH) and hydrochemical characteristics (Na2+, K+, Ca2+, Mg2+, HCO3¯, NO3¯, Cl¯, CO23¯ and SO42¯) of groundwater were determined. Findings revealed that pH value for Asu River Group ranges from 5.3 to 7.5, and that of Eze Aku Group ranges from 4.1 to 7.9. It was observed that areas around the mines had low pH value. Analyzed results that was obtained were interpreted using various hydrogeochemical models. Parson plots showed that groundwater within the two geological groups fell within Ca˗Mg˗SO4 and Ca˗Mg˗Cl. Results from End˗member plots revealed that 96 % groundwater samples analyzed were categorize under carbonate weathering, 4 % fell under silicate weathering. Deductions from Gibbs revealed that interactions between groundwater and surrounding host rocks is the major processes responsible for chemical characteristics of groundwater, Diamond field plots further suggested that groundwater from the two geological group were categorized to be high in Ca + Mg & SO4 + Cl, plot of Ca2+/(HCO3¯ + SO42¯) against Na+/Cl¯  revealed that groundwater were considered to be within natural state for the two group. Plot of TDS against TH showed that groundwater was classified to be soft fresh water. The study revealed there was no significant difference between factors that influences groundwater within the two geological group. 


1991 ◽  
Vol 24 (6) ◽  
pp. 25-33
Author(s):  
A. J. Jakeman ◽  
P. G. Whitehead ◽  
A. Robson ◽  
J. A. Taylor ◽  
J. Bai

The paper illustrates analysis of the assumptions of the statistical component of a hybrid modelling approach for predicting environmental extremes. This shows how to assess the applicability of the approach to water quality problems. The analysis involves data on stream acidity from the Birkenes catchment in Norway. The modelling approach is hybrid in that it uses: (1) a deterministic or process-based description to simulate (non-stationary) long term trend values of environmental variables, and (2) probability distributions which are superimposed on the trend values to characterise the frequency of shorter term concentrations. This permits assessment of management strategies and of sensitivity to climate variables by adjusting the values of major forcing variables in the trend model. Knowledge of the variability about the trend is provided by: (a) identification of an appropriate parametric form of the probability density function (pdf) of the environmental attribute (e.g. stream acidity variables) whose extremes are of interest, and (b) estimation of pdf parameters using the output of the trend model.


Sign in / Sign up

Export Citation Format

Share Document