Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria

2014 ◽  
Vol 17 (2) ◽  
pp. 385-394 ◽  
Author(s):  
A.A. Cisek ◽  
M. Binek

AbstractBacterial colonization of the chicken gut by environmental microbes begins immediately after hatching. Composition of the intestinal microbiota is dependent on the surrounding environment, diet variation, pathological conditions, antibiotic therapy, and others. The genomes of all these intestinal microbes form a microbiome which by far outnumbers the host’s genome. As a consequence, the microbiome provides additional metabolic functions to the host, including nutrient utilization and absorption, fermentation of non-digestible dietary fiber, synthesis of some vitamins, biotransformation of bile acids, and the well-being of their chicken host. Microorganisms can also directly interact with the lining of the gastrointestinal tract, which may alter the physiology and immunological status of the bird. Since newly hatched broiler chickens demonstrate delayed commensal colonization and low bacterial diversity, the most effective and harmless method available to control the development and composition of the intestinal microbiota is a competitive exclusion treatment by applying probiotic bacteria. Additionally, recent research has shown that probiotic bacteria have a variety of beneficial effects, including counteraction of dysbiosis, promotion of gut health and homeostasis, enhancement of immune defenses and antagonization of infectious agents

2015 ◽  
Vol 81 (17) ◽  
pp. 5880-5888 ◽  
Author(s):  
C. De Maesschalck ◽  
V. Eeckhaut ◽  
L. Maertens ◽  
L. De Lange ◽  
L. Marchal ◽  
...  

ABSTRACTIn broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon andClostridiumcluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level,Lactobacillus crispatusandAnaerostipes butyraticuswere significantly increased in abundance in the colon and cecum, respectively.In vitrofermentation of XOS revealed cross-feeding betweenL. crispatusandA. butyraticus. Lactate, produced byL. crispatusduring XOS fermentation, was utilized by the butyrate-producingAnaerostipesspecies. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.


2021 ◽  
Author(s):  
Dafei Yin ◽  
Youli Wang ◽  
Liqun Wang ◽  
Yuqin Wu ◽  
Xiaoyi Bian ◽  
...  

Abstract BackgroundThe use of newly harvested corn in feed causes wet droppings in broilers and increased feed cost which was termed as “new season grain problem”. The present study was conducted to evaluate the proteomic profile of newly harvested corn and the subsequent influence on intestinal microbiol community for broiler chickens. MethodsNewly harvested corn stored for either half a month (HM) or two months (TM) was used, and the pasting properties, total soluble sugars, and proteomic analysis technology was used to explore the influence of storage on natural aging corn properties. Additionally, seventy-two 7d Ross 308 male broiler chicken were fed with different stored corn. Apparent metabolizable energy (AME), digesta viscosity, intestinal morphology and microbiota were examined to explore the influence of feed corn storage on broiler chickens. ResultsPasting properties in the TM corn exhibited decreased viscoelastic properties. Proteomic studies found a total of 26 proteins that were differentially expressed between the two treatment groups. Proteins involved in starch and polysaccharides biosynthesis were upregulated in TM compared with HM. Chickens fed on TM diet had higher relative energy utilization compared to the HM birds. With increased corn storage, the relative digesta viscosity decreased significantly (P≤0.05). The total number of goblet cells and lymphocytes was lower in chickens fed the TM diet. The microbiota data showed that the TM chickens had decreased abundance of diarrheal bacteria such as Hungatella hathewayi and Bacteroides fragilis, and increased butyrate-producing bacteria such as Alistipes compared to the HM chickens. ConclusionsStorage of newly harvested corn induced the synthetic reaction of large molecules and changed the solubility of starch and protein with increasing soluble sugars and decreasing pasting properties that may improve the fermentation of intestinal microbiota, improve the energy utilization and protect gut health without the risk of diarrhea.


2021 ◽  
Vol 8 (9) ◽  
pp. 187
Author(s):  
Nikoletta Such ◽  
Valéria Farkas ◽  
Gábor Csitári ◽  
László Pál ◽  
Aliz Márton ◽  
...  

In this research, the effects of early post-hatch inoculation of a competitive exclusion product (Br) and the continuous feeding of a synbiotic supplement (Sy) containing probiotic bacteria, yeast, and inulin on the production traits and composition of ileal chymus (IC), ileal mucosa (IM), and caecal chymus (CC) microbiota of broiler chickens were evaluated. The dietary treatments had no significant effects on the pattern of intestinal microbiota or production traits. The digestive tract bacteriota composition was affected mostly by the sampling place and age of birds. The dominant family of IC was Lactobacillaceae, without change with the age. The abundance of the two other major families, Enterococcaceae and Lachnospiraceae decreased with the age of birds. In the IM, Clostridiaceae was the main family in the first three weeks. Its ratio decreased later and Lactobacillaceae became the dominant family. In the CC, Ruminococcaceae and Lachnospiraceae were the main families with decreasing tendency in the age. In IC, Br treatment decreased the abundance of genus Lactobacillus, and both Br and Sy increased the ratio of Enterococcus at day 7. In all gut segments, a negative correlation was found between the IBD antibody titer levels and the ratio of genus Leuconostoc in the first three weeks, and a positive correlation was found in the case of Bifidobacterium, Rombutsia, and Turicibacter between day 21 and 40.


2020 ◽  
pp. 135-144
Author(s):  
E. Yu. Plotnikova ◽  
Yu. V. Zakharova

Today, there is an explosion of discoveries related to a growing understanding of the role of microbial communities, key species of bacteria, products or metabolites derived from commensals, and in particular the relationship between some of these components and painful conditions in humans. Microbiota plays a fundamental role in the induction, training and functioning of the host’s immune system. In turn, the immune system has evolved significantly as a means of maintaining the host’s symbiotic relations with these very diverse and developing microbes. At optimal performance, this alliance of the immune system and microbiota allows to induce protective reactions to pathogens and maintain regulatory pathways involved in maintaining tolerance to harmless antigens. In this review, we outline the role of the intestinal microbiota in the immune system, starting with initial information supporting further insights into the effects of intestinal microbiota dysbacteriosis on the host’s susceptibility to infection. Probiotics are considered a good form of therapy to control harmful intestinal microorganisms, improve digestion and the absorption of nutrients. The beneficial effects of probiotics have been demonstrated in many diseases. One of the main mechanisms of probiotics is the regulation of the immune response of the host. The article reviews and discusses the regulatory role of probiotics in the “intestine-lungs” system and the immune system of mucous membranes for potential antiviral mechanisms. The unique role of probiotics in modulation of intestinal microbes and establishment of intestinal homeostasis and production of interferon as antiviral mechanism is described. In addition, the regulatory role of probiotics in the system «intestine-lungs» and the immune system of the mucous membranes for potential antiviral mechanisms, including in COVID-19 is considered and discussed. Symbiotic products Bac-Set® Forte and Bac-Set® Cold/Flu are described.


2021 ◽  
Vol 10 (10) ◽  
pp. e489101019166 ◽  
Author(s):  
Luisa Ferreira da Cruz ◽  
Israel Lucas Antunes Souza ◽  
Larissa Dias de Souza ◽  
Marcelo Gonzaga de Freitas Araújo ◽  
Paulo Afonso Granjeiro

The gastrointestinal tract houses the largest and most complex community of microorganisms, and this bacterial colonization of the human intestine by environmental microbes begins immediately after the birth. The intestinal microbiota has several important and unique functions, including metabolic functions such as the biotransformation of drugs and the digestion of dietary compounds; a mucosal barrier function by inhibiting the invasion of pathogens and an immunomodulatory function. On the other hand, some commensal bacteria can be pathogenic, causing infections if the natural host is compromised and, in predisposed hosts, the intestinal microbiota can be involved in nosocomial infection. The translocation of bacteria through the intestinal wall is considered one of the main causes of nosocomial infections. The aim of this review is to provide a comprehensive view of the human gut microbiota, its main functions, its role in health and disease, addressing the correlation between intestinal microbial composition and nosocomial infections.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Shan Wei ◽  
Michael Lilburn ◽  
Zhongtang Yu

The gastrointestinal (GI) bacteriome of poultry is important in host nutrition and health, but its diversity and composition remain poorly characterized. In this study we phylogenetically characterized the bacteriome in the cecal contents and ileal mucosa of chickens and turkeys using metagenomics empowered by pyrosequencing technique. >95% coverage of bacterial diversity was achieved except for the turkey ileal mucosa. Collectively, 3,401 and 125 operational taxonomy units (OTU, defined at a 0.03 phylogenetic distance) in chicken, and 1,687 and 16 OTUs in turkey were identified from the cecal content and the ileal mucosa, respectively. Besides those previously reported, 39 and 50 additional genera of bacteria were identified in the chicken and turkey cecal bacteriome, respectively. Although the GI bacteriomes of the same region in both species exhibited greater similarity than the bacteriomes of different regions within each species, broiler chickens and turkeys harbor a distinct intestinal bacteriome. Such difference may suggest different dietary interventions for bacteriome modulation for enhanced nutrient utilization and gut health. The results may also be useful in developing prebiotics, probiotics, and analytical tools (e.g., phylochips). We also determined the variation in the number of OTUs and variability between two independent pyrosequencing runs and two data processing pipelines.


2017 ◽  
Vol 97 (11) ◽  
pp. 3742-3751 ◽  
Author(s):  
Pawan Kumar ◽  
Amlan Kumar Patra ◽  
Guru Prasad Mandal ◽  
Indranil Samanta ◽  
Saktipada Pradhan

2016 ◽  
Vol 72 (10) ◽  
pp. 611-615 ◽  
Author(s):  
Marian Binek ◽  
Magdalena Kizerwetter-Świda ◽  
Agata Anna Cisek ◽  
Magdalena Rzewuska ◽  
Dorota Chrobak-Chmiel ◽  
...  

Intestinal microbes are taxonomically diverse and constitute an ecologically dynamic microbiom interactively performing various physiological and physiopathological processes. It has been proposed that normal intestinal microbiotas play a critical role in the host’s metabolic homeostasis and immune tolerance. The modulation of intestinal microbiota populations by prebiotics, probiotics, and synbiotics may be beneficial for the host’s health. Under certain conditions, the intestinal microbiota and the host’s homeostasis can be restored by introducing bacteria that co-mediate anti-inflammatory responses. Commensal microbes and probiotics exert their beneficial effect by at least three mechanisms. These include - the maintenance of the epithelial barrier function and the attenuation of changes in intestinal permeability through effects on tight junction, decreasing paracellular permeability, providing innate defense against pathogens, and enhancing the physical impediment of the mucous layer, - competitive exclusion by the application of probiotic bacteria stabilizing the indigenous microflora, - immunomodulatory capacity, affecting a variety of signaling pathways with modulation of proper immune, inflammatory and allergic responses. The epithelial gut barrier faces important challenges, since its function is to prevent pathogens and harmful elements of the gut lumen from penetrating into the internal environment. Competitive exclusion treatment can increase resistance to pathogen colonization and control intestinal disturbance. The dominance of symbiotic and probiotic bacteria among the gut microbiota favors a tolerogenic immune response. The release of secretory IgA stabilizes tight junctions between cells of the epithelial layer as well as hampers pathogens and symbionts invading deeper layers. The understanding of these vital processes may help to protect the host against infection, prevent chronic inflammation, and maintain mucosal integrity.


2018 ◽  
Vol 19 (8) ◽  
pp. 2407 ◽  
Author(s):  
Beibei He ◽  
Yu Bai ◽  
Lili Jiang ◽  
Wei Wang ◽  
Tiantian Li ◽  
...  

Oat bran has drawn great attention within human research for its potential role in improving gut health. However, research regarding the impact of oat bran on nutrient utilization and intestinal functions in pigs is limited. The purpose of this study was to investigate the effects of oat bran on nutrient digestibility, intestinal microbiota, and inflammatory responses in the hindgut of growing pigs. Twenty-six growing pigs were fed either a basal diet (CON) or a basal diet supplemented with 10% oat bran (OB) within a 28 day feeding trial. Results showed that digestibility of dietary gross energy, dry matter, organic matter, and crude protein were lower in the OB group compared to the CON group on day 14, but no differences were observed between the two groups on day 28. In the colon, the relative abundance of operational taxonomic units (OTUs) associated with Prevotella, Butyricicoccus, and Catenibacterium were higher, while those associated with Coprococcus and Desulfovibrio were lower in the OB group compared to the CON group. Oat bran decreased mRNA expression of caecal interleukin-8 (IL-8), as well as colonic IL-8, nuclear factor-κB (NF-κB), and tumor necrosis factor-α (TNF-α) of the pigs. In summary, oat bran treatment for 28 day did not affect dietary nutrient digestibility, but promoted the growth of cellulolytic bacteria and ameliorated inflammatory reactions in the hindgut of growing pigs.


Author(s):  
Mir Zulqarnain Talpur ◽  
Peng Wentong ◽  
Yuxian Zeng ◽  
Peipei Xie ◽  
Jincheng Li ◽  
...  

The purpose of this study was to see how dietary supplementation with phenylpyruvate affected broiler chicken growth, slaughter performance, gut health microbiota, and immunity. A total of 288 day old broiler chickens were randomly assigned to one of four groups (6 replicates each with 12 chicken). NC (basal diet), PC (basal diet plus antibiotic virginiamycin 15ppm), LCP and HCP (basal diet plus phenylpyruvate 1kg/t and 2kg/t, respectively). Results showed that PC had higher ADFI during the first 21 days, and better FCR than the NC, the LCP and HCP also improved broilers’ FCR 0.001 and 0.037% in relation to NC respectively. HCP has a higher all-eviscerated ratio than NC and less abdominal fat than LCP. HCP has increased villus length and crypt depth in the ileum compared to the NC. Bursa was lower in HCP and thymus was lower in LCP and PC. In contrast HCP have lower pro-inflammatory cytokine IL-1, as well as lower TLR4. The phenylpyruvate improved family Selenomonadaceae, genus Megamonas Bacteroides species that are known for beneficial effects like for maintenance of the cell surface structure, regulating aromatic amino acids and C. jejuni-suppressive treatment respectively. Finally, phenylpyruvate feed supplement can be utilized to improve growth performance and positively modulate gut microbiota, however this is less efficient than antibiotics in improving growth performance, although more efficient in improving productive performance and gut morphology. Moreover, high dose of phenylpyruvate is more effective than low dose


Sign in / Sign up

Export Citation Format

Share Document