scholarly journals Relative Effects of Dietary Administration of a Competitive Exclusion Culture and a Synbiotic Product, Age and Sampling Site on Intestinal Microbiota Maturation in Broiler Chickens

2021 ◽  
Vol 8 (9) ◽  
pp. 187
Author(s):  
Nikoletta Such ◽  
Valéria Farkas ◽  
Gábor Csitári ◽  
László Pál ◽  
Aliz Márton ◽  
...  

In this research, the effects of early post-hatch inoculation of a competitive exclusion product (Br) and the continuous feeding of a synbiotic supplement (Sy) containing probiotic bacteria, yeast, and inulin on the production traits and composition of ileal chymus (IC), ileal mucosa (IM), and caecal chymus (CC) microbiota of broiler chickens were evaluated. The dietary treatments had no significant effects on the pattern of intestinal microbiota or production traits. The digestive tract bacteriota composition was affected mostly by the sampling place and age of birds. The dominant family of IC was Lactobacillaceae, without change with the age. The abundance of the two other major families, Enterococcaceae and Lachnospiraceae decreased with the age of birds. In the IM, Clostridiaceae was the main family in the first three weeks. Its ratio decreased later and Lactobacillaceae became the dominant family. In the CC, Ruminococcaceae and Lachnospiraceae were the main families with decreasing tendency in the age. In IC, Br treatment decreased the abundance of genus Lactobacillus, and both Br and Sy increased the ratio of Enterococcus at day 7. In all gut segments, a negative correlation was found between the IBD antibody titer levels and the ratio of genus Leuconostoc in the first three weeks, and a positive correlation was found in the case of Bifidobacterium, Rombutsia, and Turicibacter between day 21 and 40.

2021 ◽  
Vol 9 (6) ◽  
pp. 1341
Author(s):  
Sarayu Bhogoju ◽  
Collins N. Khwatenge ◽  
Thyneice Taylor-Bowden ◽  
Gabriel Akerele ◽  
Boniface M. Kimathi ◽  
...  

There are well documented complications associated with the continuous use of antibiotics in the poultry industry. Over the past few decades, probiotics have emerged as viable alternatives to antibiotics; however, most of these candidate probiotic microorganisms have not been fully evaluated for their effectiveness as potential probiotics for poultry. Recent evaluation of a metagenome of broiler chickens in our laboratory revealed a prevalence of Lactobacillus reuteri (L. reuteri) and Actinobacteria class of bacteria in their gastrointestinal tract. In this study Lactobacillus reuteri and Streptomyces coelicolor (S. coelicolor) were selected as probiotic bacteria, encapsulated, and added into broiler feed at a concentration of 100 mg/kg of feed. In an 8-week study, 240 one day-old chicks were randomly assigned to four dietary treatments. Three dietary treatments contained two probiotic bacteria in three different proportions (L. reuteri and S. coelicolor individually at 100 ppm, and mixture of L. reuteri and S. coelicolor at 50 ppm each). The fourth treatment had no probiotic bacteria and it functioned as the control diet. L. reuteri and S. coelicolor were added to the feed by using wheat middlings as a carrier at a concentration of 100 ppm (100 mg/kg). Chickens fed diets containing L. reuteri and S. coelicolor mixture showed 2% improvement in body weight gain, 7% decrease in feed consumption, and 6–7% decrease in feed conversion ratios. This research suggests that L. reuteri and S. coelicolor have the potential to constitute probiotics in chickens combined or separately, depending on the desired selection of performance index.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1909
Author(s):  
Ilaria Biasato ◽  
Ilario Ferrocino ◽  
Elena Grego ◽  
Sihem Dabbou ◽  
Francesco Gai ◽  
...  

In the present trial, 160 heavy-size male broiler chickens were allocated to 4 dietary treatments (control feed [C] and 5, 10 and 15% TM meal inclusion, respectively, with 5 replicate pens/treatment and 8 birds/pen) to evaluate the influence of TM meal on intestinal microbiota and mucin composition. The broiler chickens fed TM-based diets showed higher beta diversity of their cecal microbiota in comparison with the C birds (p < 0.001). A significant decrease of the relative abundance of Firmicutes phylum and lower Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05) were also identified in TM15 broiler chickens when compared to the C group. Furthermore, the TM birds showed decreased relative abundance of Clostridium, Coprococcus, L-Ruminococcus and Ruminococcus genera (FDR < 0.05). In relation to the gut mucin composition, higher mucin staining intensity was detected in the intestinal crypts of TM5 birds in comparison with the other TM groups (p < 0.05). In conclusion, dietary TM meal inclusion negatively influenced the cecal microbiota of heavy-size broiler chickens in terms of partial alteration of the physiological microbial population and reduction of the potential beneficial bacteria (with slightly more pronounced effects when testing the 10–15% inclusion levels).


2020 ◽  
Author(s):  
Santi Devi Upadhaya ◽  
Je Min Ahn ◽  
Jae Hyoung Cho ◽  
Hyeun Bum Kim ◽  
Jin Young Kim ◽  
...  

Abstract Background: Effective antibiotic alternatives are the urgent need of poultry industry to control disease outbreaks. Phage therapy mainly utilizes lytic phages to kill their respective bacterial hosts and can be attractive solution to combating the emergence of antibiotic resistance in livestock. Methods: Five hundred and four one-day--old broilers (Ross 308) were allotted into 1 of 4 treatment groups according to a completely randomized design. Dietary treatments consisted of CON (basal diet), PC (CON + 0.025% Avilamax®(antibiotics), TR1 (CON + 0.05% bacteriophage), and TR2 (CON + 0.10 % bacteriophage) groups. Results: A significant linear effect on body weight gain (BWG) was observed during day 1-7, day 22-35, and overall experiment in bacteriophage (BP) supplemented groups. The BWG tended to be higher (P = 0.08) and the feed intake (FI) was increased (P = 0.017) in birds fed PC than CON diets. A greater (P = 0.016) BWG and trends in increased FI (P = 0.06) were observed during the overall experiment period in birds fed PC than CON diet. A trend in linear (P = 0.0833) increment in excreta Lactobacillus counts was observed in birds fed graded level of BP supplemented diets. At the genus level, the relative abundance of Lactobacillus was decreased in PC (65.28%), while it was similar in TR1, 2, (90.65%, 86.72%, 81.44%) compared to CON (90.19%). At the species level, relative abundance of Lactobacillus salivarus was higher in TR1 (40.15%) and TR2 (38.58%) compared with CON (20.04%) and PC (18.05%). A linear reduction in the weight of Bursa of Fabricus (P = 0.022) and spleen (P = 0.052) was seen in birds fed increasing level of BP diets and a trend in increment (P = 0.059) in the weight of gizzard was observed in birds fed PC than BP diets. Linear and quadratic responses were observed in redness of breast muscle color in birds fed graded level of BP. Conclusions:The increase in dietary BP supplementation linearly increased BWG, Lactobacillus counts and enhanced beneficial microbiota in the gut, and 0.05% BP addition was sufficient for supporting immune organs, bursa and spleen.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 781
Author(s):  
Nikoletta Such ◽  
László Pál ◽  
Patrik Strifler ◽  
Boglárka Horváth ◽  
Ilona Anna Koltay ◽  
...  

The main goal of the current study was to investigate the effects of feeding low protein (LP) diets on the performance parameters and excreta composition of broiler chickens. In total, 288 male Ross 308 day-old chickens were divided into two dietary treatment groups using six replicate pens with 24 chickens each. No LP diet was fed in the starter phase. The protein reduction in the grower and finisher phases were 1.8% and 2% respectively. Beside the measurements of production traits, on day 24 and 40 representative fresh excreta samples were collected, their dry matter, total N, NH4+-N and uric acid-N contents determined, and the ratio of urinary and fecal N calculated. Dietary treatments failed to cause significant differences in the feed intake, growth rate, and feed conversion ratio of animals. LP diets decreased the total nitrogen and uric acid contents of excreta significantly. The age of birds had also significant effect, resulting more reduction in the grower phase compared with the finisher. The ratio of urinary N was higher at day 40 compared with the age of day 24. The urinary N content of broiler chicken’s excreta is lower than can be found in the literature, which should be considered in the ammonia inventory calculations.


2016 ◽  
Vol 72 (10) ◽  
pp. 611-615 ◽  
Author(s):  
Marian Binek ◽  
Magdalena Kizerwetter-Świda ◽  
Agata Anna Cisek ◽  
Magdalena Rzewuska ◽  
Dorota Chrobak-Chmiel ◽  
...  

Intestinal microbes are taxonomically diverse and constitute an ecologically dynamic microbiom interactively performing various physiological and physiopathological processes. It has been proposed that normal intestinal microbiotas play a critical role in the host’s metabolic homeostasis and immune tolerance. The modulation of intestinal microbiota populations by prebiotics, probiotics, and synbiotics may be beneficial for the host’s health. Under certain conditions, the intestinal microbiota and the host’s homeostasis can be restored by introducing bacteria that co-mediate anti-inflammatory responses. Commensal microbes and probiotics exert their beneficial effect by at least three mechanisms. These include - the maintenance of the epithelial barrier function and the attenuation of changes in intestinal permeability through effects on tight junction, decreasing paracellular permeability, providing innate defense against pathogens, and enhancing the physical impediment of the mucous layer, - competitive exclusion by the application of probiotic bacteria stabilizing the indigenous microflora, - immunomodulatory capacity, affecting a variety of signaling pathways with modulation of proper immune, inflammatory and allergic responses. The epithelial gut barrier faces important challenges, since its function is to prevent pathogens and harmful elements of the gut lumen from penetrating into the internal environment. Competitive exclusion treatment can increase resistance to pathogen colonization and control intestinal disturbance. The dominance of symbiotic and probiotic bacteria among the gut microbiota favors a tolerogenic immune response. The release of secretory IgA stabilizes tight junctions between cells of the epithelial layer as well as hampers pathogens and symbionts invading deeper layers. The understanding of these vital processes may help to protect the host against infection, prevent chronic inflammation, and maintain mucosal integrity.


2020 ◽  
Vol 21 (3) ◽  
pp. 499-507 ◽  
Author(s):  
Nikoletta Such ◽  
Andor MOLNÁR ◽  
Valéria Farkas ◽  
László PÁL ◽  
Ferenc HUSVÉTH ◽  
...  

2014 ◽  
Vol 17 (2) ◽  
pp. 385-394 ◽  
Author(s):  
A.A. Cisek ◽  
M. Binek

AbstractBacterial colonization of the chicken gut by environmental microbes begins immediately after hatching. Composition of the intestinal microbiota is dependent on the surrounding environment, diet variation, pathological conditions, antibiotic therapy, and others. The genomes of all these intestinal microbes form a microbiome which by far outnumbers the host’s genome. As a consequence, the microbiome provides additional metabolic functions to the host, including nutrient utilization and absorption, fermentation of non-digestible dietary fiber, synthesis of some vitamins, biotransformation of bile acids, and the well-being of their chicken host. Microorganisms can also directly interact with the lining of the gastrointestinal tract, which may alter the physiology and immunological status of the bird. Since newly hatched broiler chickens demonstrate delayed commensal colonization and low bacterial diversity, the most effective and harmless method available to control the development and composition of the intestinal microbiota is a competitive exclusion treatment by applying probiotic bacteria. Additionally, recent research has shown that probiotic bacteria have a variety of beneficial effects, including counteraction of dysbiosis, promotion of gut health and homeostasis, enhancement of immune defenses and antagonization of infectious agents


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1581
Author(s):  
Artur Rybarczyk ◽  
Elżbieta Bogusławska-Wąs ◽  
Alicja Dłubała

The objective of the study was to determine the effects of probiotic bacteria Bacillus licheniformis and Bacillus subtilis on microbiological properties of feed mixtures and on the digestive tract content as applicable to production traits and carcass characteristics of fatteners. The experiment was performed on 83,838 fatteners from four successive (insertions) productions in two groups. From the seventy eighth day of age till marketing to the slaughter plant, the pigs were supplied with BioPlus YC probiotic (Chr. Hansen) in the amount of 400 g/t. The preparation contained a complex of probiotic bacteria Bacillus licheniformis DSM 5749, and Bacillus subtilis DSM 5750 spores in a 1:1 ratio. From the fourth insertion, after reaching a body weight of approximately 112 kg, 60 fatteners were selected from each group to measure carcass quality and half of them for meat quality evaluation. Moreover, microbiological analyses in feed and colon were performed. The study showed that BioPlus YC probiotics supplementation resulted in a significantly higher count of B. subtilis and B. licheniformis in the feed, a higher count of B. subtilis, B. licheniformis and LAB, as well as a lower count of Enterobacteriaceae, Enterococcus, Clostridium and Bacillus sp. in the mucosa and in the colorectal content of the test pigs. Our work has shown that supplementation with the BioPlus YC probiotic had a positive effect on the production traits of pigs mainly by reducing mortality (2.83%, p = 0.010), lowering feed conversion ratio—FCR (2.59 kg/kg, p = 0.013), better average daily gain—ADG (0.95 kg/day, p = 0.002) and shorter fattening period (77.25 days, p = 0.019) when compared to the control group (4.19%; 2.79 kg/kg; 0.89 kg/day; 92.8 days, respectively). The addition of the specific Bacillus bacteria did not influence carcass and meat characteristics of the test fatteners.


2021 ◽  
Vol 13 (7) ◽  
pp. 4005
Author(s):  
Nikola Puvača ◽  
Snežana Tanasković ◽  
Vojislava Bursić ◽  
Aleksandra Petrović ◽  
Jordan Merkuri ◽  
...  

The aim of this research was the visual characterization and investigating the effects of Alternaria spp. contaminated wheat grains in the starter stage of broilers nutrition on productive parameters and oxidative stress. The research was divided into two phases. Bunches of wheat in post-harvest period of year 2020 was collected from a various locality in Serbia and Albania. In the first phase, collected samples were visual characterized by Alternaria spp. presence by color measurement methods. Gained results are conferred in the range of the color properties of grain color properties of Alternaria toxins. Wheat grain samples were significantly different (p < 0.05) in terms of all measured color parameters (L*, a*, b*). Classification of field fungi in analyzed wheat grain samples showed that the significant field fungi were Rhizopus spp., followed by Alternaria spp., and Fusarium spp. In the second phase, biological tests with chickens were carried out during the broiler chickens’ dietary starter period in the first 14th days of age. At the beginning of the experiment, a total of 180-day-old Ross 308 strain broilers were equally distributed into three dietary treatments, with four replicates each. Dietary treatments in the experiments were as follows: basal diet without visual contamination of Alternaria spp. with 25% wheat (A1), a basal diet with visual contamination of Alternaria spp. with 25% wheat from Serbia (A2), basal diet with visual contamination of Alternaria spp. with 25% wheat from Albania (A3). The trial with chickens lasted for 14 days. After the first experimental week, wheat infected with Alternaria spp. in treatment A2 and A3 expressed adverse effects. The highest body weight of chickens of 140.40 g was recorded in broilers on control treatment A1 with statistically significant differences (p < 0.05) compared to treatments A2 (137.32 g) and A3 (135.35 g). At the end of the second week of test period, a statistically significant (p < 0.05) difference in body weight of broiler chickens could be noticed. The highest body weight of 352.68 g was recorded in control treatment A1, with statistically significant differences compared to other Alternaria spp. treatments. The lowest body weight of chickens was recorded in treatment A3 (335.93 g). Results of feed consumption and feed conversion ratio showed some numerical differences between treatments but without any statistically significant differences (p > 0.05). Alternaria spp. contaminated diet increased glutathione (GSH), glutathione reductase (GR), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) and decreased peroxidase (POD) and superoxide dismutase (SOD) serum levels, respectively. Built on the achieved results, it can be concluded that the wheat contaminated with Alternaria spp. in broilers nutrition negatively affected growth, decreased oxidative protection and interrupted chicken welfare in the first period of life.


Sign in / Sign up

Export Citation Format

Share Document