scholarly journals Mems Technology Quality Requirements as Applied to Multibeam Echosounder

2018 ◽  
Vol 25 (4) ◽  
pp. 59-64
Author(s):  
Krzysztof Bikonis ◽  
Jerzy Demkowicz

Abstract Small, lightweight, power-efficient and low-cost microelectromechanical system (MEMS) inertial sensors and microcontrollers available in the market today help reduce the instability of Multibeam Sonars. Current MEMS inertial measurement units (IMUs) come in many shapes, sizes, and costs - depending on the application and performance required. Although MEMS inertial sensors offer affordable and appropriately scaled units, they are not currently capable of meeting all requirements for accurate and precise attitudes, due to their inherent measurement noise. The article presents the comparison of different MEMS technologies and their parameters regarding to the main application, namely Multibeam Echo Sounders (MBES). The quality of MEMS parameters is crucial for further MBES record-processing. The article presents the results of undertaken researches in that area, and these results are relatively positive for low-cost MEMS. The paper undertakes some vital aspect of using MEMS in the attitude and heading reference system (AHRS) context. The article presents a few aspects of MEMS gyro errors and their estimation process in the context of INS processing flow, as well as points out the main difficulties behind the INS when using a few top MEMS technologies.

2015 ◽  
Vol 49 (3) ◽  
pp. 56-63
Author(s):  
Donal Kennedy ◽  
Eric Cullen ◽  
Regina McNulty ◽  
Mark Gaffney ◽  
Michael Walsh ◽  
...  

Abstract This paper describes the development of marine inertial measurement units (MIMUs) for the measurement of buoy motions. MIMUs are miniature, low-power, low-cost devices that utilize off-the-shelf microelectromechanical system (MEMS) components to monitor motion. Two MIMU devices have been deployed off the coast of Ireland—using SmartBay's test facilities and data infrastructure; these transmit buoy motion data to shore in real time. The recorded inertial data are used to develop algorithms that provide relevant information for marine applications, with the eventual aim of embedding these on the MIMU itself. Methods and results are presented of one such application—the measurement of significant wave height (Hs)—and are shown to be comparable to state-of-the-art solutions, at a fraction of the cost and power requirements. Additional applications and possible future developments of the work are also discussed.


Author(s):  
Simon Castro ◽  
Robert Dean ◽  
Grant Roth ◽  
George T. Flowers ◽  
Brian Grantham

Advances in MEMS technology have resulted in relatively low cost gyroscopes and accelerometers and, correspondingly, inexpensive inertial measurement systems. This has opened up the field of applications for inertial measurement units (IMUs) and they are currently being proposed for use in a wide variety of possible applications, with environmental conditions ranging from mild to harsh. Of particular interest in this study are MEMS gyroscopes, which are based upon vibratory, rather than rotational, designs and are especially susceptible to the effects of acoustic noise, as compared to conventional gyroscopes. This is particularly true for certain applications. For example, in some aerospace environments, noise levels can be greater than 120 dB and extend over a frequency range greater than 20 kHz. Output signals can be overwhelmed by such effects, becoming extremely contaminated and noisy and, can even be completely saturated. So, it is important to develop an understanding of the influence of high levels of noise on MEMS gyroscope performance and to develop methodologies to mitigate such effects. In the present investigation, a series of experimental studies were conducted for a variety of MEMS gyroscope designs. Each unit was exposed to a range of acoustic noise amplitudes and frequencies. The output signals were recorded and analyzed. The results are presented and discussed in detail. Strategies for mitigating such effects were identified and tested. Those results are also discussed in detailed.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 5990
Author(s):  
Isaia Andrenacci ◽  
Riccardo Boccaccini ◽  
Alice Bolzoni ◽  
Giulio Colavolpe ◽  
Cosimo Costantino ◽  
...  

Gait and jump anomalies are often used as indicators to identify the presence and state of disorders that involve motor symptoms. Physical tests are often performed in specialized laboratories, which offer reliable and accurate results, but require long and costly analyses performed by specialized personnel. The use of inertial sensors for gait and jump evaluation offers an easy-to-use low-cost alternative, potentially applicable by the patients themselves at home. In this paper, we compared three inertial measurement units that are available on the market by means of well-known standardized tests for the evaluation of gait and jump behavior. The aim of the study was to highlight the strengths and weaknesses of each of the tested sensors, considered in different tests, by comparing data collected on two healthy subjects. Data were processed to identify the phases of the movement and the possible inaccuracies of each sensor. The analysis showed that some of the considered inertial units could be reliably used to identify the gait and jump phases and could be employed to detect anomalies, potentially suggesting the presence of disorders.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


2012 ◽  
Vol 81 ◽  
pp. 65-74 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Paola Farinelli ◽  
Roberto Sorrentino

MEMS (MicroElectroMechanical-Systems) technology applied to the field of Radio Frequency systems (i.e. RF-MEMS) has emerged in the last 10-15 years as a valuable and viable solution to manufacture low-cost and very high-performance passive components, like variable capacitors, inductors and micro-relays, as well as complex networks, like tunable filters, reconfigurable impedance matching networks and phase shifters, and so on. The availability of such components and their integration within RF systems (e.g. radio transceivers, radars, satellites, etc.) enables boosting the characteristics and performance of telecommunication systems, addressing for instance a significant increase of their reconfigurability. The benefits resulting from the employment of RF-MEMS technology are paramount, being some of them the reduction of hardware redundancy and power consumption, along with the operability of the same RF system according to multiple standards. After framing more in detail the whole context of RF MEMS technology, this paper will provide a brief introduction on a typical RF-MEMS technology platform. Subsequently, some relevant examples of lumped RF MEMS passive elements and complex reconfigurable networks will be reported along with their measured RF performance and characteristics.


2012 ◽  
Vol 224 ◽  
pp. 533-538 ◽  
Author(s):  
Jing Zhou ◽  
Steven Su ◽  
Ai Huang Guo ◽  
Wei Dong Chen

Inertial measurement units (IMU) are used as an affordable and effective remote measurement method for health monitoring in body sensor networks (BSNs) based on tracking people’s daily motions and activities. These inertial sensors are mostly micro-electro-mechanical systems with a combination of multi-axis combinations of precision gyroscopes, accelerometers, and magnetometers to sense multiple degrees of freedom (DoF).Unfortunately in the process of motion monitoring actual sensor outputs may contain some abnormalities, which might result in the misinterpretations of activities. In this paper, we use Principal component analysis (PCA) combined with Hotelling’s T2 and SPE statistic to detect abnormal data in the process of motion monitoring with IMU to ensure the reliability and accuracy in application. The simulated results prove this method is effective and feasible.


2014 ◽  
Vol 12 ◽  
pp. 61-66 ◽  
Author(s):  
Pavol Kajánek

Inertial navigation system (INS) is a self-contained navigation technique. Its main purpose is to determinate the position and the trajectory of the object´s movement in space. This technique is well represented not only as a supplementary method (GPS/INS integrated system) but as an autonomous system for navigation of vehicles and pedestrians, also. The aim of this paper is to design a test for low-cost inertial measurement units. The test results give us information about accuracy, which determine the possible use in indoor navigation or other applications. There are described some methods for processing the data obtained by inertial measurement units, which remove noise and improve accuracy of position and orientation.


Sign in / Sign up

Export Citation Format

Share Document