scholarly journals Manoeuvring Prediction of KVLCC2 with Hydrodynamic Derivatives Generated by a Virtual Captive Model Test

2019 ◽  
Vol 26 (4) ◽  
pp. 16-26
Author(s):  
Kun Dai ◽  
Yunbo Li

Abstract This paper describes the application of computational fluid dynamics rather than a towing tank test for the prediction of hydrodynamic derivatives using a RANS-based solver. Virtual captive model tests are conducted, including an oblique towing test and circular motion test for a bare model scale KVLCC2 hull, to obtain linear and nonlinear hydrodynamic derivatives in the 3rd-order MMG model. A static drift test is used in a convergence study to verify the numerical accuracy. The computed hydrodynamic forces and derivatives are compared with the available captive model test data, showing good agreement overall. Simulations of standard turning and zigzag manoeuvres are carried out with the computed hydrodynamic derivatives and are compared with available experimental data. The results show an acceptable level of prediction accuracy, indicating that the proposed method is capable of predicting manoeuvring motions.

Brodogradnja ◽  
2021 ◽  
Vol 72 (2) ◽  
pp. 93-114
Author(s):  
Kun Dai ◽  
◽  
Yunbo Li ◽  

Free running model tests and a system-based method are employed to evaluate maneuvering performance for a Small Waterplane Area Twin Hull (SWATH) ship in this paper. A 3 degrees of freedom Maneuvering Modeling Group (MMG) model is implemented to numerically simulate the maneuvering motions in calm water. Virtual captive model tests are performed by using a Reynolds-averaged Navier-Stokes (RANS) method to acquire hydrodynamic derivatives, after a convergence study to check the numerical accuracy. The turning and zigzag maneuvers are simulated by solving the maneuvering motion model and the predicted results agree well with the experimental data. Moreover, free running model tests are carried out for three lateral separations and the influence of the lateral separations on maneuvering performance is investigated. The research results of this paper will be helpful for the maneuvering prediction of the small waterplane area twin hull ship.


2015 ◽  
Vol 39 (3) ◽  
pp. 173-178 ◽  
Author(s):  
Jae-Hun Jeong ◽  
Ji-Hun Ok ◽  
Chi-Seung Lee ◽  
Jae-Myung Lee ◽  
Seung-Keon Lee

2015 ◽  
Vol 12 (2) ◽  
pp. 95-102
Author(s):  
Y. Yanuar ◽  
G. Gunawan ◽  
M. A. Talahatu ◽  
R. T. Indrawati ◽  
A. Jamaluddin

Resistance reduction in ship becomes an important issue to be investigated. Energy consumption and its efficiency are related toward drag reduction. Drag reduction in fluid flow can be obtained by providing polymer additives, coating, surfactants, fiber and special roughness on the surface hull. Fish skin surface coated with biopolymers viscous fluid (slime) is one method in frictional resistance reduction. The aim of this is to understanding the effect of drag reduction using eel slime biopolymer in unsymmetrical trimaran ship model. The Investigation was conducted using towing tank test with variation of velocity. The dimension of trimaran model are L = 2 m, B = 0.20 m and T = 0.065 m. The ship model resistance was precisely measured by a load cell transducer. The comparison of resistance on trimaran ship model coated and uncoated by eel slime are shown on the graph as a function of the total drag coefficient and Froude number. It is discovered the trimaran ship model by eel slime has higher drag reduction compared to trimaran with no eel slime at similar displacement. The result shows the drag reduction about 11 % at Fr 0.35.


2021 ◽  
Author(s):  
Xiangbiao Wang ◽  
Chun Bao Li ◽  
Ling Zhu

Abstract Ship collision accidents occur from time to time in recent years, and this would cause serious consequences such as casualties, environmental pollution, loss of cargo on board, damage to the ship and its equipment, etc. Therefore, it is of great significance to study the response of ship motion and the mechanism of structural damage during the collision. In this paper, model experiments and numerical simulation are used to study the ship-ship collision. Firstly, the Coupled Eulerian-Lagrangian (CEL) was used to simulate the fluid-structure interaction for predicting structural deformation and ship motion during the normal ship-ship collision. Meanwhile, a series of model tests were carried out to validate the numerical results. The validation presented that the CEL simulation was in good agreement with the model test. However, the CEL simulation could not present the characteristics the time-dependent added mass.


Author(s):  
Ahmet Dursun Alkan ◽  
Onur Usta ◽  
Alpay Acar ◽  
Elis Atasayan

Luxury high-speed boats are increasingly being used for entertainment purposes. However, not only humans, but also animals are negatively affected by high-speed boats, and time is running out fast for people to do something about it. This study presents a review of current negative effects of high-speed boats to the environment. In this study, the flow around a benchmark planing Fridsma boat is simulated by CFD and resistance values for different non-dimensional Froude number (Fn) conditions are validated from the experimental results obtained from the literature. Using the same CFD methodology, a catamaran model in which the towing tank test results are available, is simulated for different Fn conditions and resistance values are predicted. In the CFD analysis, unsteady flow around the Fridsma hull model and catamaran model is simulated using overset meshing technique and turbulence is modeled by Reynolds Averaged Navier Stokes (RANS) with SST (Menter) k-omega turbulence model. Resistance values are compared with the experimental data and required propulsion powers are estimated for different Fn conditions. Then, total resistance of the catamaran for full-scale vessel is calculated using an extrapolation method and required propulsion power predictions are conducted. Noise prediction, corresponding to the required propulsion power are presented. In particular, the change of noise level and harmful gases released into the environment, when the speed of the vessel increases are examined and discussed. Consequently, it is believed that this study would lay an important foundation for the widespread investigation for the negative effects of the high-speed boats in the future.


2010 ◽  
Vol 163-167 ◽  
pp. 2027-2032
Author(s):  
Dong Yan Xue ◽  
Yu Qing Liu ◽  
Qian Wang ◽  
Biao Ma

The main span is the steel truss and the side spans are the composite truss in Minpu Bridge. A 1:2.5 model is made to study the mechanical behavior of the joint segment of steel truss and composite truss. Both a model test and a numerical finite element analysis(FEA) method have been conducted. The results show that the joint segment remains in a linear elastic state under the condition. The maximum stress in the structure is less than the material allowable strength. The FEA results are in very good agreement with those of model test. This study shows that the force transformation of the joint segment is reliable and the composition details are rational. It is also expected that the results presented in this paper would be useful as references for the further research and the design of composite truss bridge and joint segment.


2015 ◽  
Vol 799-800 ◽  
pp. 865-869 ◽  
Author(s):  
Vladimir Yakovlevich Modorskiy ◽  
Arthur Fadanisovich Shmakov

In this work results of numerical modeling of the gasdynamic processes and processes of deformation proceeding in the compressor of the model test bench of the gas-distributing unit are provided. Fields of pressure and temperatures, and also component of the stress-strain state structure taking into account the imported gasdynamic and heat loads are received. A good agreement with data of physical experiments is received.


2011 ◽  
Vol 117-119 ◽  
pp. 647-651
Author(s):  
Chuan Qi Li ◽  
Wei Wang ◽  
Jie Gong ◽  
Xin Lai Zhao

Physical and numerical model studies were performed in order to study the flow conditions for the proposed pump station of Shuangwangcheng reservoir, Shouguang Ctiy. The flow velocity and the pressure distribution in the bidirectional culvert of Shuangwangcheng Pump Station had been obtained by hydraulic model test and numerical simulation. The physical model was constructed to a Froude scale of 1:20. A general conclusion was that, the computed results were good agreement with the data measured in physical model, and could be good complement for physical model test. Furthermore, negative pressure existing in discharge steep culvert in the initial scheme design was eliminated by moving the culvert controlling gate to the end of culvert in the modified scheme, and the flow conditions was improved.


2021 ◽  
Vol 28 (2) ◽  
pp. 46-53
Author(s):  
Radosław Kołodziej ◽  
Paweł Hoffmann

Abstract Prediction of the maneuvering characteristics of a ship at the design stage can be done by means of model tests, computational simulations or a combination of both. The model tests can be realized as a direct simulation of the standard maneuvers with the free running model, which gives the most accurate results but is also the least affordable, as it requires a very large tank or natural lake, as well as the complex equipment of the model. Alternatively, a captive model test can be used to identify the hydrodynamic characteristics of the hull, which can be used to simulate the standard maneuvers with the use of dedicated software. Two types of captive model tests are distinguished: circular motion tests (CMT) and planar motion mechanism tests (PMM). The paper presents an attempt to develop a computational method for ship maneuverability prediction in which the hydrodynamic characteristics of the hull are identified by means of computational fluid dynamics (CFD). The CFD analyses presented here directly simulate the circular motion test. The resulting hull characteristics are verified against the available literature data, and the results of the simulations are verified against the results of free running model tests. Reasonable agreement shows the large potential of the proposed method.


Author(s):  
Tianlong Mei ◽  
Yi Liu ◽  
Manasés Tello Ruiz ◽  
Marc Vantorre ◽  
Evert Lataire ◽  
...  

Abstract The ship’s manoeuvring behaviour in waves is significantly different from that in calm water. In this context, the present work uses a hybrid method combining potential flow theory and Computational Fluid Dynamics (CFD) techniques for the prediction of ship manoeuvrability in regular waves. The mean wave-induced drift forces are calculated by adopting a time domain 3D higher-order Rankine panel method, which includes the effect of the lateral speed and forward speed. The hull-related hydrodynamic derivatives are determined based on a RANS solver using the double body flow model. The two-time scale method is applied to integrate the improved seakeeping model in a 3-DOF modular type Manoeuvring Modelling Group (MMG model) to investigate the ship’s manoeuvrability in regular waves. Numerical simulations are carried out to predict the turning circle in regular waves for the S175 container carrier. The turning circle’s main characteristics as well as the wave-induced motions are evaluated. A good agreement is obtained by comparing the numerical results with experimental data obtained from existing literature. This demonstrates that combining potential flow theory with CFD techniques can be used efficiently for predicting the manoeuvring behaviour in waves. This is even more true when the manoeuvring derivatives cannot be obtained from model tests when there is lack of such experimental data.


Sign in / Sign up

Export Citation Format

Share Document