On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling

Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Guy Jumarie

AbstractIt has been pointed out that the derivative chains rules in fractional differential calculus via fractional calculus are not quite satisfactory as far as they can yield different results which depend upon how the formula is applied, that is to say depending upon where is the considered function and where is the function of function. The purpose of the present short note is to display some comments (which might be clarifying to some readers) on the matter. This feature is basically related to the non-commutativity of fractional derivative on the one hand, and furthermore, it is very close to the physical significance of the systems under consideration on the other hand, in such a manner that everything is right so. As an example, it is shown that the trivial first order system may have several fractional modelling depending upon the way by which it is observed. This suggests some rules to construct the fractional models of standard dynamical systems, in as meaningful a model as possible. It might happen that this pitfall comes from the feature that a function which is continuous everywhere, but is nowhere differentiable, exhibits random-like features.

2012 ◽  
Vol 13 (01) ◽  
pp. 1250012 ◽  
Author(s):  
HASSAN ALLOUBA ◽  
ERKAN NANE

Lately, many phenomena in both applied and abstract mathematics and related disciplines have been expressed in terms of high order and fractional PDEs. Recently, Allouba introduced the Brownian-time Brownian sheet (BTBS) and connected it to a new system of fourth order interacting PDEs. The interaction in this multiparameter BTBS-PDEs connection is novel, leads to an intimately-connected linear system variant of the celebrated Kuramoto–Sivashinsky PDE, and is not shared with its one-time-parameter counterpart. It also means that these PDEs systems are to be solved for a family of functions, a feature exhibited in well known fluids dynamics models. On the other hand, the memory-preserving interaction between the PDE solution and the initial data is common to both the single- and the multi-parameter Brownian-time PDEs. Here, we introduce a new — even in the one-parameter case — proof that combines stochastic analysis with analysis and fractional calculus to simultaneously link BTBS to a new system of temporally half-derivative interacting PDEs as well as to the fourth-order system proved earlier and differently by Allouba. We then introduce a general class of random fields we call inverse-stable-Lévy-time Brownian sheets (ISLTBSs), and we link them to β-fractional-time-derivative systems of interacting PDEs for 0 < β < 1. When β = 1/ν, ν ∈ {2, 3, …}, our proof also connects an ISLTBS to a system of memory-preserving ν-Laplacian interacting PDEs. Memory is expressed via a sum of temporally-scaled k-Laplacians of the initial data, k = 1, …, ν - 1. Using a Fourier–Laplace-transform-fractional-calculus approach, we give a conditional equivalence result that gives a necessary and sufficient condition for the equivalence between the fractional and the high order systems. In the one-parameter case this condition automatically holds.


1954 ◽  
Vol 19 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Theodore Hailperin

Hilbert and Ackermann ([1], p. 107) define a first order axiom system as one in which the axioms contain one or more predicate constants, but no predicate variables. Here “axiom” refers to the specific subject-matter axioms and not to the rules of the restricted predicate calculus (quantification theory), which rules are presupposed for each first-order system. It is pointed out by them that an exception could be made for the predicate of identity; for the axiom scheme for this predicate, namelywhich has in (b) the variable predicate F, could nevertheless be replaced, in any given first-order system, by a finite set of axioms without predicate variables. Thus, for example, if Φ[x, y) is the one constant predicate of such a system then PId(b) could be replaced byThus one postulates, in addition to the reflexivity, symmetry, and transitivity of identity, the substitutivity of identical entities in each of the possible “atomic” contexts of a variable (occurrences in the primitive predicates). In this method of introducing identity it has to be taken as an additional primitive predicate and further axioms are consequently needed. In such a system having PId(a), (b1)−(b3) as axioms, the scheme PId(b) can be derived as a meta-theorem of the system, F(x) then being any formula of the system.


1972 ◽  
Vol 37 (4) ◽  
pp. 683-695 ◽  
Author(s):  
Henry Africk

In [5] Scott asked if there was a proof theoretic proof of his interpolation theorem. The purpose of this paper is to provide such a proof, working with the first order system LK of Gentzen [2]. Our method is an extension of the one in Maehara [3] for Craig's interpolation theorem. We will also sketch the original model theoretic proof and show how Scott used his result to obtain a definability theorem of Svenonius [7].A language for LK contains the usual logical symbols: , ∧, ∨, ⊃, ∀, ∃; countably many free variables a0, a1, … and bound variables x0, x1, …; and some or all of the following nonlogical symbols: n-ary predicates ; n-ary functions ; and individual constants c0, c1, …. Semiterms are defined as follows: (1) Free variables, bound variables and individual constants are semiterms. (2) If f is an n-ary function and s1 …, sn are semiterms, then f(s1 …, sn), is a semiterm. A term is a semiterm that does not contain a bound variable. Formulas are defined as follows: (1) If R is an n-ary predicate and t1 …, tn are terms, then R(t1 …, tn) is a formula. (2) If A and B are formulas, then A, A ∧ B, A ∨ B and A ⊃ B are formulas. (3) If A(t) is a formula which has zero or more occurrences of the term t, and if x is a bound variable not contained in A(t), then ∀xA(x) and ∃xA(x) are formulas where A(x) is obtained from A(t) by substituting x for t at all indicated places.


2016 ◽  
Vol 136 (5) ◽  
pp. 676-682 ◽  
Author(s):  
Akihiro Ishimura ◽  
Masayoshi Nakamoto ◽  
Takuya Kinoshita ◽  
Toru Yamamoto

2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 594-612 ◽  
Author(s):  
Abdon Atangana ◽  
Emile Franc Doungmo Goufo

AbstractHumans are part of nature, and as nature existed before mankind, mathematics was created by humans with the main aim to analyze, understand and predict behaviors observed in nature. However, besides this aspect, mathematicians have introduced some laws helping them to obtain some theoretical results that may not have physical meaning or even a representation in nature. This is also the case in the field of fractional calculus in which the main aim was to capture more complex processes observed in nature. Some laws were imposed and some operators were misused, such as, for example, the Riemann–Liouville and Caputo derivatives that are power-law-based derivatives and have been used to model problems with no power law process. To solve this problem, new differential operators depicting different processes were introduced. This article aims to clarify some misunderstandings about the use of fractional differential and integral operators with non-singular kernels. Additionally, we suggest some numerical discretizations for the new differential operators to be used when dealing with initial value problems. Applications of some nature processes are provided.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1464
Author(s):  
Vasily E. Tarasov

General fractional dynamics (GFDynamics) can be viewed as an interdisciplinary science, in which the nonlocal properties of linear and nonlinear dynamical systems are studied by using general fractional calculus, equations with general fractional integrals (GFI) and derivatives (GFD), or general nonlocal mappings with discrete time. GFDynamics implies research and obtaining results concerning the general form of nonlocality, which can be described by general-form operator kernels and not by its particular implementations and representations. In this paper, the concept of “general nonlocal mappings” is proposed; these are the exact solutions of equations with GFI and GFD at discrete points. In these mappings, the nonlocality is determined by the operator kernels that belong to the Sonin and Luchko sets of kernel pairs. These types of kernels are used in general fractional integrals and derivatives for the initial equations. Using general fractional calculus, we considered fractional systems with general nonlocality in time, which are described by equations with general fractional operators and periodic kicks. Equations with GFI and GFD of arbitrary order were also used to derive general nonlocal mappings. The exact solutions for these general fractional differential and integral equations with kicks were obtained. These exact solutions with discrete timepoints were used to derive general nonlocal mappings without approximations. Some examples of nonlocality in time are described.


2020 ◽  
Vol 8 (1) ◽  
pp. 68-91
Author(s):  
Gianmarco Giovannardi

AbstractThe deformability condition for submanifolds of fixed degree immersed in a graded manifold can be expressed as a system of first order PDEs. In the particular but important case of ruled submanifolds, we introduce a natural choice of coordinates, which allows to deeply simplify the formal expression of the system, and to reduce it to a system of ODEs along a characteristic direction. We introduce a notion of higher dimensional holonomy map in analogy with the one-dimensional case [29], and we provide a characterization for singularities as well as a deformability criterion.


1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


Sign in / Sign up

Export Citation Format

Share Document