scholarly journals Modern Sediment Model of Traffic Flow

2021 ◽  
Vol 22 (3) ◽  
pp. 301-311
Author(s):  
Bauyrzhan Yedilbayev ◽  
Arnold Brener ◽  
Akmaral Shokanova ◽  
Aigul Boltayeva

Abstract The work deals with the mathematical modeling of traffic phenomena. The submitted model is based on a prospective analogy of some described phenomena with particle sedimentation. Both the qualitative analysis of the model and the numerical experiment is carried out. Qualitative results of the research have been compared with the known data of supervision of the traffic on city highways. As a result, the main control parameters which can use for optimal traffic management are highlighted and justified.

2011 ◽  
Vol 8 (1) ◽  
pp. 143-152
Author(s):  
S.F. Khizbullina

The steady flow of anomalous thermoviscous liquid between the coaxial cylinders is considered. The inner cylinder rotates at a constant angular velocity while the outer cylinder is at rest. On the basis of numerical experiment various flow regimes depending on the parameter of viscosity temperature dependence are found.


2021 ◽  
Vol 13 (15) ◽  
pp. 8324
Author(s):  
Viacheslav Morozov ◽  
Sergei Iarkov

Present experience shows that it is impossible to solve the problem of traffic congestion without intelligent transport systems. Traffic management in many cities uses the data of detectors installed at controlled intersections. Further, to assess the traffic situation, the data on the traffic flow rate and its concentration are compared. Latest scientific studies propose a transition from spatial to temporal concentration. Therefore, the purpose of this work is to establish the regularities of the influence of traffic flow concentration in time on traffic flow rate at controlled city intersections. The methodological basis of this study was a systemic approach. Theoretical and experimental studies were based on the existing provisions of system analysis, traffic flow theory, experiment planning, impulses, probabilities, and mathematical statistics. Experimental data were obtained and processed using modern equipment and software: Traficam video detectors, SPECTR traffic light controller, Traficam Data Tool, SPECTR 2.0, AutoCad 2017, and STATISTICA 10. In the course of this study, the authors analyzed the dynamics of changes in the level of motorization, the structure of the motor vehicle fleet, and the dynamics of changes in the number of controlled intersections. As a result of theoretical studies, a hypothesis was put forward that the investigated process is described by a two-factor quadratic multiplicative model. Experimental studies determined the parameters of the developed model depending on the directions of traffic flow, and confirmed its adequacy according to Fisher’s criterion with a probability of at least 0.9. The results obtained can be used to control traffic flows at controlled city intersections.


2008 ◽  
Vol 18 (08) ◽  
pp. 1409-1441 ◽  
Author(s):  
AVNER FRIEDMAN ◽  
BEI HU

The cells in a tissue occupying a region Ωt are divided according to their cycling phase. The density pi of cells in phase i depends on the spatial variable x, the time t, and the time si since the cells entered in phase i. The pi(x, t, si) and the oxygen concentration w(x, t) satisfy a system of PDEs in Ωt, and the boundary of Ωt is a free boundary. We denote by [Formula: see text] the oxygen concentration on the free boundary and consider the radially symmetric case, so that Ωt = {r < R(t)}. We prove that R(t) is always bounded; furthermore, if [Formula: see text] is small, then R(t) → 0 as t → ∞, and if [Formula: see text] is large, then R(t) ≥ c > 0 for all t. Finally, we prove the existence and uniqueness of a stationary solution in a special case.


Author(s):  
Needhi U. Gaonkar

Abstract: Traffic analysis plays an important role in a transportation system for traffic management. Traffic analysis system using computer vision project paper proposes the video based data for vehicle detection and counting systems based on the computer vision. In most Transportation Systems cameras are installed in fixed locations. Vehicle detection is the most important requirement in traffic analysis part. Vehicle detection, tracking, classification and counting is very useful for people and government for traffic flow, highway monitoring, traffic planning. Vehicle analysis will supply with information about traffic flow, traffic summit times on road. The motivation of visual object detection is to track the vehicle position and then tracking in successive frames is to detect and connect target vehicles for frames. Recognising vehicles in an ongoing video is useful for traffic analysis. Recognizing what kind of vehicle in an ongoing video is helpful for traffic analysing. this system can classify the vehicle into bicycle, bus, truck, car and motorcycle. In this system I have used a video-based vehicle counting method in a highway traffic video capture using cctv camera. Project presents the analysis of tracking-by-detection approach which includes detection by YOLO(You Only Look Once) and tracking by SORT(simple online and realtime tracking) algorithm. Keywords: Vehicle detection, Vehicle tracking, Vehicle counting, YOLO, SORT, Analysis, Kalman filter, Hungarian algorithm.


2021 ◽  
Vol 2021 (23) ◽  
pp. 205-213
Author(s):  
Andrii Vozniuk ◽  
◽  
Oksana Hulchak ◽  
Volodymyr Kaskiv ◽  
Yevheniia Shapenko ◽  
...  

Збірник наукових праць «ДОРОГИ І МОСТИ» www.dorogimosti.org.uaISSN 2524-0994. Dorogi i mosti, 2021. Issue 23ТРАНСПОРТНІ ТЕХНОЛОГІЇ21312. Annual safety report 2018. URL: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf (Last accessed: 01.12.2020) [in English].13. Monitorynh dorozhno-transportnykh pryhod na avtomobilnykh dorohakh zahalnoho korystuvannya derzhavnoho znachennya Ukrayiny za 2018 rik [Monitoring of road accidents on public roads of state importance of Ukraine in 2018] : report. DP «DerzhdorNDI». Kyiv, 2019. 73 p. [in Ukrainian].14. Dmytrychenko M.F., Lanovyy O.T., Polishchuk V.P. Systemolohiya na transporti. Tekhnolohiya naukovykh doslidzhen’ i tekhnichnoyi tvorchosti (Knyha 2) [Systemology in transport. Technology of scientific research and technical creativity (Book 2)]. Kyiv, 2007. 318 p. [in Ukrainian].15. Duran B., Odel P. Klasterniy analiz [Cluster Analysis]. Moscow, 1977. 128 p. [in Russian].16. Zhambu M. Yerarkhycheskii klaster-analiz i sootvetstviya [Hierarchical cluster analysis and correspondences]. Moscow, 1988. 342 p. [in Russian].17. Holdberg A.M., Kozlov V.S. Obshchaya teoriya statistiki [General theory of statistics]. Moscow, 1985. 367 p. [in Russian].Volodymyr Kaskiv1, Ph.D., Associate Prof., https://orcid.org/0000-0002-8074-6798Yevheniia Shapenko2, Ph.D., https://orcid.org/0000-0003-0937-9400Oksana Hulchak2, Ph.D., Associate Prof., https://orcid.org/0000-0001-8186-4529Andrii Vozniuk3,https://orcid.org/0000-0002-7611-96521 M.P. Shulgin State Road Research Institute State Enterprise – DerzhdorNDI SE, Kyiv, Ukraine2 National Transport University, Kyiv, Ukraine 3 State Road Agency of Ukraine (Ukravtodor), Kyiv, Ukraine SUBSTANTIATION OF FACTORS OF INFLUENCE ON TRAFFIC SAFETYAbsractVelocity of personal vehicles or traffic flow for a certain period of time and on a certain section of the road is the main indicator that characterizes the impact of road conditions, environment, technical condition of the car and psychophysiological factors on the driver.To evaluate the each factor impact of on the velocity, survey was conducted on the M-06Kyiv – Chop road. A cluster analysis of field observation data was performed using the Statistica 12 software, connections were established in the middle of the data set, and the obtained data were organized into certain structures. As a result of the clustering, groups of clusters that have the greatest impact on speed were identified. Determining the hierarchy of factors influencing the speed and safety of the transport process shall improve approaches for modeling traffic flow velocity dependences. The paper describes an analysis of road safety risk factors.Problem Statement. The need to modernize approaches for traffic flow prediction, traffic volume distribution on the road network, means and methods of traffic management, traffic management systems in connection with quantitative and qualitative changes in the transport sector of Ukraine.Purpose. Road safety risk factors validation and ranking.Materials and method. Mathematical modeling and cluster analysis using survey data.Results. The dependence of speed on road conditions was improved using mathematical modeling.Conclusions. The hierarchy of factors influencing the speed and safety of the transport process is determined.Keywords: analysis, cluster, safety, road, method, model, velocity.


1999 ◽  
Vol 26 (3) ◽  
pp. 270-281 ◽  
Author(s):  
Mark Carter ◽  
Hesham Rakha ◽  
Michel Van Aerde

On most freeways, a number of factors interact to produce lane-to-lane variations in speed and volume which are both site and volume dependent. The following paper explores and statistically verifies these variations using detector data and a combination of complementary techniques based on data collected for 30 days at 27 detector stations in May 1994 along the Queen Elizabeth Way freeway near Toronto, Ontario. The analysis indicates that considerable volume dependencies exist at each site, and that these dependencies are site specific. In addition to their independent variations, speed and flow are also shown to interact differently across different lanes and result in different underlying speed-flow relationships. The findings are intended to be relevant to the calibration of microscopic traffic simulation models and automatic incident detection algorithms. As such, the paper does not attempt to specifically identify the underlying causes for the variations, but rather attempts to recognize the aggregated effects of these causes in a fashion that would be useful to real-time freeway traffic management system control strategies relying solely on loop detector inputs.Key words: traffic-flow theory, traffic modeling, traffic simulation, incident-detection algorithms.


Author(s):  
Hossein Chehardoli ◽  
Mohammad R. Homaeinezhad ◽  
Ali Ghasemi

This paper details control design and stability analysis of homogeneous traffic flow by considering it as the interaction between inter-connected vehicular platoons. A third-order linear differential model is used to describe the longitudinal motion of each vehicle. As the lead vehicle of the whole traffic flow may be not available, the inter-platoon communication structure is assumed to be a bidirectional virtual leader following (BDVLF) topology. Both communication and parasitic delays are considered in the system modeling and control design. By employing an appropriate state transformation, the 3 N-order closed-loop dynamics are decoupled to N third-order dynamical equations. The cluster treatment characteristic root (CTCR) method is employed to perform the inter-platoon stability analysis. The intra-platoon communication structure is assumed to be general. Therefore, the eigenvalues of matrix H maybe complex which makes the stability analysis more intricate. By introducing a new decoupling approach and applying a centralized control for each vehicle in the platoon, the necessary conditions on control parameters satisfying intra-platoon stability are presented. The most important merit of this method compared to previous works, is that control parameters are independent of eigenvalues of matrix H. Several simulation studies are provided to show the effectiveness of the proposed approaches.


2008 ◽  
Vol 19 (11) ◽  
pp. 1705-1715 ◽  
Author(s):  
WEI-WEI ZHANG ◽  
RUI JIANG ◽  
YAO-MING YUAN ◽  
QING-SONG WU

This paper investigates traffic dynamics of two-lane mixed traffic flow system composed of cars and buses, which are characterized by different lengths and different maximum velocities. Four lane changing regulations are studied, which reveals effect of lane changing ban, symmetric and asymmetric lane changing rules on traffic flow characteristics (flow rate, carry capability, lane changing frequency, and lane usage). We expect that our results could be useful for traffic management.


2013 ◽  
Vol 409-410 ◽  
pp. 1209-1212
Author(s):  
Da Shan Chen

The macroscopic traffic flow parameters characteristic is an important research content in traffic flow theory. Urban expressway plays an important role in the urban road network. It is gradually shifting from large-scale infrastructure-oriented to refinement of traffic management. With the growing of traffic demand and much more traffic congestion and accidents, integrated active traffic management should be involved in urban expressway management on the back ground of car-road coordination. As the backbone road network, traffic flow characteristic parameters have great value for the control and management of urban expressway. Then the characteristic variables of the expressway traffic flow were identified which support meticulous management for urban expressway.


Sign in / Sign up

Export Citation Format

Share Document