scholarly journals Hydrological effects of Norway spruce and European beech on snow cover in a mid-mountain region of the Polana mts., Slovakia / Hydrologický vplyv smreka obyčajného a buka lesného na snehovú pokrývku v stredohorských polohách pohoria poľana na slovensku

2012 ◽  
Vol 60 (4) ◽  
pp. 319-332 ◽  
Author(s):  
Matus Hribik ◽  
Tomas Vida ◽  
Jaroslav Skvarenina ◽  
Jana Skvareninova ◽  
Lubomir Ivan

The paper evaluates the results of a 6-year-monitoring of the eco-hydrological influence of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus silvatica L.) forest stands on the hydro-physical properties of snow cover. The experiment was carried out in the artificially regenerated 20-25-year-old forest stands approaching the pole timber stage in the middle mountain region of the Polana Mts. - Biosphere reserve situated at about 600 m a.s.l. during the period of maximum snow supply in winters of years 2004 - -2009. Forest canopy plays a decisive role at both the snow cover duration and spring snow melting and runoff generation. A spruce stand is the poorest of snow at the beginning of winter. High interception of spruce canopy hampers the throughfall of snow to soil. During the same period, the soil surface of a beech stand accumulates greater amount of snow. However, a spruce stand accumulates snow by creating snow heaps during the periods of maximum snow cumulation and stand´s microclimate slows down snow melting. These processes are in detail discussed in the paper. The forest stands of the whole biosphere reserve slow down to a significant extent both the snow cover melting and the spring runoff of the whole watershed.

2005 ◽  
Vol 35 (11) ◽  
pp. 2756-2764 ◽  
Author(s):  
Werner Borken ◽  
Fritz Beese

Soil respiration was measured in adjacent pure and mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) at Solling, Germany. Forest type had a significant effect on soil respiration, which was highest in the pure beech stand and lowest in the pure spruce stand. Both throughfall and soil temperature increased with the proportion of beech. Additionally, microbial respiration and biomass in the organic (O) horizons increased sequentially from the pure spruce to the pure beech stand, suggesting that abiotic and biotic factors enhanced the decomposition of litter under beech. Because the spruce litter decomposition rate was low, carbon (C) stocks of the O horizons increased with the proportion of spruce, from 1.6 to 5.1 kg C·m–2. The removal of the O horizons decreased soil respiration by 31%–45%, indicating a large contribution of the mineral soil and roots to total soil respiration. Turnover times of organic C in the O horizons ranged between 5.5 years in the pure beech stand and 20.6 years in the pure spruce stand. Our results suggest that tree species conversion may alter the turnover of soil organic matter, and thus the sequestration of organic C in the O horizons.


2017 ◽  
Vol 36 (3) ◽  
pp. 268-280 ◽  
Author(s):  
Michal Mikloš ◽  
Ilja Vyskot ◽  
Tomáš Šatala ◽  
Katarína Korísteková ◽  
Martin Jančo ◽  
...  

AbstractThe aim of this work was to assess how forest ecosystems dominated by Norway spruce (Picea abies (L.) or European beech (Fagus sylvatica L.) affect snow water equivalent (SWE) in relation to aspect and elevation. The research plots were established in a small headwater watershed of the Hučava flow belonging to the Poľana Biosphere Reserve (Central Europe, Inner Western Carpathians). The SWE values in this watershed (approximately 580–1270 m a.s.l.) were monitored during the three winter seasons starting from 2012–2013 to 2014–2015. The results revealed high variability in SWE and in snow cover duration between the studied seasons. The spatial variability was significantly affected by the forest ecosystem, aspect and elevation. The seasonal mean SWE value was lower by about 50–60% in the spruce forests and by about 21–30% in the beech forests compared to the open areas (100%). Over the whole seasons, the whole watershed mean SWE value on the slopes with the northern aspect was mostly higher compared to the slopes with the southern aspect. The effect of aspect was significant mainly in the open areas and in the forests dominated by European beech during the ablation periods of every season. In the case of the sufficient snow cover, the mean SWE value always increased with elevation. The elevation gradient of SWE was steepest at the open areas of the watershed in the peaks of the winter seasons. The three-season mean value of SWE elevation gradient (per 100 m) at the time of snow accumulation peak was equal to 16 mm in the spruce forests, 20 mm in the beech forests and 26 mm in the open areas. The research revealed that SWE is significantly affected by the forest ecosystem whilst its effect is dependent on the occurrence of dominant deciduous or coniferous tree species. However, the effect of forests is closely related to topographic characteristics (aspect and elevation) of a locality.


2019 ◽  
Vol 10 (2) ◽  
pp. 159-164
Author(s):  
Valentin Cristea ◽  
Ștefan Leca ◽  
Albert Ciceu ◽  
Șerban Chivulescu ◽  
Ovidiu Badea

Background and Purpose: Romania’s forests are of globally significant value due to their natural characteristics, as similar forests in some other parts of the world have been lost forever. These types of forests, so-called "virgin" and "quasi-virgin (old growth)" forests, are also identified in the Buzau Mountains, which are part of the Eastern Carpathians in Romania (Curvature Region). Materials and Methods: To study and understand the structure and dynamics of primeval forest, four permanent one-hectare research plots were installed in the Penteleu Mountains, part of the Buzau Mountains. All trees with a diameter at breast height (DBH) greater than 80 mm were measured and their main dendrometric characteristics (DBH, height and social position) registered. The forest structure was analysed by fitting different theoretical distribution functions (beta, gamma, gamma 3P, gamma 3P mixt, loglogistic 3p, lognormal 3P and Weibull 3p). The structural homogeneity of the permanent research plots was tested using the Camino index (H) and Gini index (G). Results: For the smaller DBH categories, Norway spruce was relatively shorter in height, but with increasing DBH, the heights of Norway spruce exceeded those of European beech. Stand volume varied between 615 and 1133 m3 per hectare. The area of maximum stability where we encountered the lowest tree height variability was recorded between the 60 cm and 100 cm diameter categories. The Lorenz curve and the Gini index indicated that the studied stands have high structural biodiversity. Conclusions: The results showed that the studied forests have an optimal structural diversity, assuring them a higher stability and multifunctionality. Thus, these forests are models for managed forests.


Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 282 ◽  
Author(s):  
Filip Oulehle ◽  
Michal Růžek ◽  
Karolina Tahovská ◽  
Jiří Bárta ◽  
Oldřich Myška

Author(s):  
Kirsten Höwler ◽  
Torsten Vor ◽  
Peter Schall ◽  
Peter Annighöfer ◽  
Dominik Seidel ◽  
...  

AbstractResearch on mixed forests has mostly focused on tree growth and productivity, or resistance and resilience in changing climate conditions, but only rarely on the effects of tree species mixing on timber quality. In particular, it is still unclear whether the numerous positive effects of mixed forests on productivity and stability come at the expense of timber quality. In this study, we used photographs of sawn boards from 90 European beech (Fagus sylvatica L.) trees of mixed and pure forest stands to analyze internal timber quality through the quality indicator knot surface that was quantitatively assessed using the software Datinf® Measure. We observed a decrease in knot surface with increasing distance from the pith as well as smaller values in the lower log sections. Regarding the influence of neighborhood species identity, we found only minor effects meaning that timber qualities in mixed stands of beech and Norway spruce (Picea abies (L.) H. Karst.) tended to be slightly worse compared to pure beech stands.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Marcin K. Dyderski ◽  
Dariusz Struzik ◽  
...  

Forest ecosystems significantly contribute to the global organic carbon (OC) pool, exhibiting high spatial heterogeneity in this respect. Some of the components of the OC pool in a forest (woody aboveground biomass (wAGB), coarse root biomass (CRB)) can be relatively easily estimated using readily available data from land observation and forest inventories, while some of the components of the OC pool are very difficult to determine (fine root biomass (FRB) and soil organic matter (SOM) stock). The main objectives of our study were to: (1) estimate the SOM stock; (2) estimate FRB; and (3) assess the relationship between both biotic (wAGB, forest age, foliage, stand density) and abiotic factors (climatic conditions, relief, soil properties) and SOM stocks and FRB in temperate forests in the Western Carpathians consisting of European beech, Norway spruce, and silver fir (32 forest inventory plots in total). We uncovered the highest wAGB in beech forests and highest SOM stocks under beech forest. FRB was the highest under fir forest. We noted a considerable impact of stand density on SOM stocks, particularly in beech and spruce forests. FRB content was mostly impacted by stand density only in beech forests without any discernible effects on other forest characteristics. We discovered significant impacts of relief-dependent factors and SOM stocks at all the studied sites. Our biomass and carbon models informed by more detailed environmental data led to reduce the uncertainty in over- and underestimation in Cambisols under beech, spruce, and fir forests for mountain temperate forest carbon pools.


Sign in / Sign up

Export Citation Format

Share Document