scholarly journals The Hardness Analysis of Epoxy Composite Reinforced with Glass Fiber Compared to Nettle Fibers

Author(s):  
I Gede Putu Agus Suryawan ◽  
NPG Suardana ◽  
IN Suprapta Winaya ◽  
IWB Suyasa

The purpose of this study is to compare the hardness of glass fiber reinforced composite materials with the hardness of netted fiber-reinforced composite materials. Glass fiber is a commercial fiber that has been used in various industries while nettle fiber is a natural fiber that is more environmentally friendly. Composite material has several advantages, namely the form that can be adjusted, high strength, lightweight and resistant to corrosion. Nettle plants are plants that have strong fibers in the bark. In this study, nettle composites were made with variations in the weight fractions of 10%, 15%, and 20%. Hardness testing used the Shore D Durometer. The results of the hardness value of glass fiber composites with weight fractions of 10%, 15%, and 20% are 82.4 Shore D, 84.5 Shore D, and 86.5 Shore D, show an increase in stable hardness because the glass fiber factor is already commercial, the fiber strength is evenly distributed. The hardness values of nettle fiber composites with fractions of 10%, 15%, and 20% are 81.6 Shore D, 85 Shore D, and 86.6 Shore D, the hardness value of each nettle composite increases with the addition of fiber weight fraction but is unstable due to the strength factor of each nettle single fiber uneven. Furthermore, with the right treatment, nettle fiber can replace glass fiber.

2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1667 ◽  
Author(s):  
Dipen Rajak ◽  
Durgesh Pagar ◽  
Pradeep Menezes ◽  
Emanoil Linul

Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.


RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6709-6718 ◽  
Author(s):  
Nikhil Khatavkar ◽  
Balasubramanian K.

This review systematically throws light on the fiber reinforced composite materials and existing technologies employed for the fabrication of high strength, low dielectric loss sandwich radomes for supersonic aircrafts.


2018 ◽  
Vol 23 ◽  
pp. 24-38 ◽  
Author(s):  
Mohammad Shahriar Kabir ◽  
M. Sahadat Hossain ◽  
Monir Mia ◽  
Md. Nazru Islam ◽  
Md.Mahmudur Rahman ◽  
...  

Today we are facing a great problem due to the synthetic compounds, as most of them are not environmentally friendly. Natural fibers are the fibers which are obtained from the nature and these fibers are environment friendly. So the use of natural fiber is increasing day by day in different sectors. But natural fiber has some limitations for widely use, one of them is the hydrophilic nature. So it cannot be widely used. That is why we need to incorporate them with low mechanical property synthetic compounds, widely known as composite materials. When we are using natural fiber with polymeric materials by forming composites, the fiber properties greatly influence the strength or mechanical properties. So researchers are trying to reduce this weakness of the natural fiber reinforced composite materials. One of the widely used methods for the improvement of tensile properties is the application of radiation (gamma and UV). The control use of gamma and UV-radiation increases the tensile properties in some extent for the use of materials in practical applications. The reason of this increment in tensile properties is the high energy radiation making crosslink among the molecules. In all the respect of fiber reinforced composite highest tensile properties are observed at a certain dose of gamma and UV-radiation.


Sign in / Sign up

Export Citation Format

Share Document