scholarly journals Uji Reaktor Gasifikasi Downdraft Biomassa Sampah Kota

Jurnal METTEK ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 110
Author(s):  
I Putu Angga Yuda Pratama ◽  
I Nyoman Suprapta Winaya ◽  
I Gede Putu Agus Suryawan

Teknologi gasifikasi tipe downdraft adalah salah satu teknologi untuk mengkonversikan bahan bakar padat atau biomassa padat secara thermokimia dengan temperatur 6000-7000 C menjadi bahan bakar gas mampu bakar dengan kebutuhan udara 20 – 40% Stoikiometri dimana suplai udara masuk dari atas menuju dasar reaktor dan proses gasifikasi terjadi di dasar reaktor.  Sampah kota atau ( Municipal Solid Westes) adalah bahan buangan yang terdiri dari bahan organik dan anorganik yang mempunyai nilai kalor sehingga dapat digunakan sebagai bahan bakar. Penelitian ini bertujuan untuk mengetahui performansi dari gasifier tipe dwondraft dengan variasi perlakuan awal bahan bakar kering, pellet, dan briket. Perbedaan perlakuan bahan bakar akan menghasilkan nilai kalor dan karakteristik bahan bakar yang berbeda sehingga nantinya akan didapatkan bahan bakar yang paling efektif. Hasil penelitian menunjukan bahwa efisiensi tertinggi didapatkan pada variasi perlakuan awal bahan bakar sampah kota yang di briketkan yaitu sebesar 61,32% dan FCR tertinggi terjadi pada bahan bakar pellet yaitu 4,61 kg/jam. Gasification type Downdraft technology is one technology to convert thermochemical solid or biomass fuels with temperatures of 6000-7000 C into combustible gas fuels with air requirements of 20 - 40% Stoichiometry where the supply of air enters from above to the reactor base and gasification process occurs at the bottom of the reactor. Municipal solid waste is a waste material consisting of organic and inorganic materials that has a heating value, so that it can be used as fuel of gasification. This study aims to determine the performance of the dwondraft gasifier with variations in the pretreatment of dry MSW, pellets and briquettes. Differences in fuel treatment will produce different heating values ??and fuel characteristics so that the most effective fuel will be found later. The results showed that the highest efficiency was found in the variation of initial treatment municipal solid waste briquettes which was 61,32%, and the highest FCR occurs in pellet fuel which is 4.61 kg / hour.

Author(s):  
Di Yang ◽  
Qiang Xie ◽  
Xinqian Shu ◽  
Yiman Jia ◽  
Jinwei Jia ◽  
...  

2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 84 ◽  
Author(s):  
Qinyang Gu ◽  
Wei Wu ◽  
Baosheng Jin ◽  
Zheng Zhou

Municipal solid waste (MSW) gasification could be a novel method that shows the various advantages over traditional MSW treatments in China. Other research concluded that MSW gasification was operating by the assistant heat, and the gasification may occur under medium temperature. So, this study is aimed to investigate MSW gasification and pyrolysis behavior and analyze the syngas evolution and reaction mechanism. The MSW samples were collected in daily life and the experiments were carried out in a fixed tubular reactor below 650 °C. The effects of medium temperature and oxygen content on syngas quality were elucidated in depth. The results have shown that temperature can promote the syngas quality in the range of 550–650 °C, because the increasing temperature strengthens the reaction rate. The oxygen content should be controlled in a certain range, or oxidation reactions will be more prominent during gasification. The optimal gasification condition in this study was obtained at 650 °C and an oxygen concentration of 1.25%, the combustible gas yield and the lower heating value (LHV) of syngas of this condition were 0.296 L/g and 10.98 kJ/L, respectively. This study provides insights for MSW gasification under medium temperature, and a practical gasification system can be designed under a certain condition.


2017 ◽  
Vol 757 ◽  
pp. 156-160
Author(s):  
Prodpran Siritheerasas ◽  
Phichayanan Waiyanate ◽  
Hidetoshi Sekiguchi ◽  
Satoshi Kodama

An investigation of the effect of the addition of char from agricultural residues on the torrefaction of moist municipal solid waste (MSW) pellets (40 wt.% moisture) was carried out in a microwave oven (500-800 W for 4-12 minutes). Char from agricultural residues, including corncob, palm shell, straw, and bagasse, was used as the microwave absorbers to enhance the absorption of microwave irradiation. It was found that the addition of char from bagasse yielded the lowest remaining mass (or mass yield) and volatile matter (VM) content, but the highest temperature and heating value, of the torrefied MSW pellet. Moisture in the MSW pellet with or without the addition of microwave absorber was completely removed after being torrefied for 8-12 minutes. The VM contents remained in the MSW pellets with the addition of microwave absorbers were lower than that in the MSW pellet without the addition of microwave absorber. The addition of microwave absorbers led to an increase in carbon (C) content but a decrease in oxygen (O) content of the torrefied MSW pellets, compared to those of the raw MSW pellet. The heating values of the torrefied MSW pellets with the addition of microwave absorbers were equivalent to that of sub-bituminous coal, enhanced from that of the raw MSW pellet, which was lower than that of lignite.


2015 ◽  
Vol 789-790 ◽  
pp. 377-381 ◽  
Author(s):  
Somrat Kerdsuwan

Incineration is a Thermal Treatment Technology (3Ts) that could be expressed as the way to get rid of waste effectively with the reduction of its mass and volume. However, to control the combustion process efficiently, especially combustion temperature, with low energy content in Municipal Solid Waste (MSW), an additional fuel is needed and leads to increase of operating cost compared with other disposal option. High Temperature Air Combustion (HTAC) has been successfully demonstrated in a lab-scale incinerator for energy saving and pollutant reduction, especially NOx. This article has the objective to design and manufacture the prototype scale High Temperature Air Incinerator with a capacity to treat MSW of 12 Ton per day. The system consists of an automatic feeding machine to feed the waste into the primary combustion chamber (PCC) where the combustion takes place. The push ram is used to push the burning waste and fall down to the lower hearth. Primary combustion air is supplied into PCC at the amount lower than the stoichiometric requirement to produce the combustible gas which is flown into the Secondary Combustion Chamber (SCC) located above PCC. Secondary combustion air is injected to react with combustible gas to convert to the product of complete combustion. A part of hot flue gas which is flew out from SCC is reverted and mixed with fresh air, in order to reduce oxygen concentration, before passing through the heat exchanger tube bundle which is placed inside SCC in order to exchange heat with hot flue gas. To manufacture the designed incinerator, the detail of materials used as well as the frabication method is explained. It has been shown that HTAC can be applied for thermal destruction of waste successfully, in term of energy saving and pollutant free. Benefits of this research work will promote the using of thermal treatment technology of dispose of MSW with lower operating cost and lower pollutants.


Sign in / Sign up

Export Citation Format

Share Document