scholarly journals ANALISIS PEMASANGAN FILTER PASIF DAN AKTIF TERHADAP KANDUNGAN HARMONISA DAN RUGI-RUGI DAYA GARDU DISTRIBUSI KA 2085 DI PT. PLN (Persero) DISTRIBUSI BALI RAYON MENGWI

2018 ◽  
Vol 5 (1) ◽  
pp. 41
Author(s):  
I Putu Budi Aryawan ◽  
Antonius Ibi Weking ◽  
I Wayan Rinas

Operation of nonlinear loads can cause harmonic distortion in the voltage and current waveforms that result in abnormal electrical system condition. Content THD (Total Harmonics Distortion) an excess flow can cause power quality systems become worse, thus causing the system power factor is lower. Active filter and Passive filter which aims to reduce harmonics that arise. Analysis THD simulation and measurement results in accordance with IEEE 519-2014 and analysis designing of a passive filter and active filter is right to suppress harmonic distortion. The analysis shows that the installation of active filters causes the current and voltage THD contents to comply with the standard IEEE 519-2014 standards is ?12% and 5%. The use of passive and active filters can reduce THDi content to 8.45% and 3.07%, respectively. While for THDv decreased respectively to 3.68% and 3.45% which already meet the IEEE 519-2014 standards. Power losses decreased respectively to 4.36 kW and 3.86 kW. Installation of active filters is better for reducing THD (Total Harmonics Distortion) and power losses in KA 2085 transformers.

2018 ◽  
Author(s):  
Andysah Putera Utama Siahaan ◽  
Putri ◽  
Solly Aryza

The problem of electric power quality is a matter of changing the form of voltage,current or frequency that can cause failure of equipment, either utility equipment or consumer property. Components of household equipment there are many nonlinear loads, one of which Mixer. Even a load nonlinear current waveform and voltage is not sinusoidal. Due to the use of household appliances such as mixers, it will cause harmonics problems that can damage the electrical system equipment. This study analyzes the percentage value of harmonics in Mixer and reduces harmonics according to standard. Measurements made before the use of LC passive filter yield total current harmonic distortion value (THDi) is 61.48%, while after passive filter use LC the THDi percentage becomes 23.75%. The order of harmonic current in the 3rd order mixer (IHDi) is 0.4185 A not according to standard, after the use of LC passive filter to 0.088 A and it is in accordance with the desired standard, and with the use of passive filterLC, the power factor value becomes better than 0.75 to 0.98.


2012 ◽  
Vol 59 (1) ◽  
pp. 281-289 ◽  
Author(s):  
Shady Hossam Eldeen Abdel Aleem ◽  
Ahmed Faheem Zobaa ◽  
Mohamed Mamdouh Abdel Aziz

2018 ◽  
Vol 5 (2) ◽  
pp. 167
Author(s):  
I G.N Nanda Ramdipa Amerta ◽  
I Wayan Rinas ◽  
I G.N Janardana

Harmonics is a periodic sine wave distortion, due to the operation of nonlinear loads. Har-monics causes current to flow in the neutral wire even though in a balanced load condition, in addition to harmonic load imbalance problems will increase the current flowing in the neutral wire, making it dangerous for the electrical system. This research was using electrical system modeling simulation in MATLAB application by changing the earth resistance value to see the effect of earth resistance value to Total Harmonic Current Distortion (THDi), it is necessary to analyze the effect of resistance value for THDi neutral wire grounding. This study uses the Fast Fourier Transform (FFT) method. THDi simulation results when the conditions of the resistance value is 9 ?, THDi percentage in phase R is 6.30%, Phase S is 2.86%, Phase T is 2.50%. When the earth resistance value is 5 ?, the percentage of THDi decreases with the value in phase R is 6.09%, Fasa S is 2.61%, Fasa T is 2.48%. When the earth resistance value is 2 ?, the THDi percentage in the R phase is 5.85%, Fasa S is 2.09%, Fasa T is 2.22%. Based on the simulation results it is known that the smaller the earth resistance value, the smaller the harmonic distortion in the electrical system.


Author(s):  
Mahmoud Mostefa Tounsi ◽  
Ahmed Allali ◽  
Houari Merabet Boulouiha ◽  
Mouloud Denaï

This paper addresses the problem of power quality, and the degradation of the current waveform in the distribution network which results directly from the proliferation of the nonlinear loads. We propose to use a five-level neutral point clamped (NPC) inverter topology for the implementation of the shunt active filter (SAPF). The aim of the SAPF is to inject harmonic currents in phase opposition at the connection point. The identification of harmonics is based on the pq method. A neuro-fuzzy controller based on ANFIS (adaptive neuro fuzzy inference system) is designed for the SAPF. The simulation study is carried out using MATLAB/Simulink and the results show a significant improvement in the quality of energy and a reduction in total harmonic distortion (THD) in accordance with IEC standard, IEEE-519, IEC 61000, EN 50160.


2021 ◽  
Vol 4 (1) ◽  
pp. 28
Author(s):  
Ramly Rasyid ◽  
Miftah Muhammad

The large number of applications of nonlinear loads in the electric power system has made the system current very distorted with a very high percentage of current harmonic content, THD (total harmonic distortion) can damage the power factor compensation capacitor, making the system power factor worse, causing interference. to the telecommunication system, increase system losses, cause various kinds of damage to sensitive electrical equipment, all of which cause the use of electrical energy to be ineffective which results in poor power quality. In this study, the collection of data obtained was based on methods such as the following, namely the measurement method. This measurement method measures the harmonic voltages and currents caused by non-linear loads.


2019 ◽  
Vol 6 (2) ◽  
pp. 24
Author(s):  
G. A. M. Dwi Ade Saputra ◽  
I Wayan Rinas ◽  
I Made Suartika

Electrical equipment categorized as the nonlinear load will cause harmonics. Harmonic is a periodic distortion of the sine wave that can cause a negative impact on electronic equipment components. One way to improve power quality is to reduce harmonics using harmonic filters. In this study, an analysis of the system was carried out before adding a filter and after adding an active filter based on a fuzzy logic controller. The application of the fuzzy logic method on filters functions to reduce over switching in the inverter so that it can reach the lowest THDi value. THDi simulation results when the existing conditions are in phase R, S, T; at 14%, 17%, 14%. When the active filter condition is without control, the THDi percentage at the R phase is 6%, the S phase is 6%, the T phase is 4%. In the active filter conditions based on the fuzzy logic controller the percentage of THDi in phase R, S, T; is 0.9%, 0.9, 1%. Based on the simulation results introduced in the active filter based fuzzy logic controller is able to reduce harmonic distortion to the lowest value, so the use of fuzzy logic in active filters can be used in the harmonic filtering process in the electrical system.


2018 ◽  
Vol 4 (2) ◽  
pp. 113
Author(s):  
I Nyoman Agus Sudiatma Pratama ◽  
I Wayan Rinas ◽  
Antonius Ibi Weking

A non-linear load operation on a power system will generate harmonics. Operating non-linear loads on the simulated electrical system at the Bene Hotel Kuta created a harmonic current which resulted in power losses. In this study, the simulation used ETAP software, and determined the standard of THD (Total Harmonic Distortion) according to IEEE 519-2014, the standard maximum THDI value 5.0% and THDV maximum 5,0%. Compared the simulation results with the specified standards, installation of a high pass active filter, as well as power loss analysis before and after filter installation. THDI value of simulation result did not still meet the standard, with the average being 9.7%. The installation of a high pass active filter could reduce harmonic distortion with an average THDI value of 1.5% and a THDV value of 0.31%. The total power loss prior to installation of active filter was 153,119.8 Watt and after the installation it became 1,511.2 Watt. The decrease in filter values used 70% of the filter's maximum capability to obtain a more efficient filter, but it still met the specified THD standard. Total loss of power on electrical system was 11,885.5W.


Author(s):  
T. M. Thamizh Thentral ◽  
K. Vijayakumar ◽  
R. Jegatheesan

Harmonic Distortion in many of the industrial applications are occur primarily owing to the enormous utilization of loads with high non-linearity like power converters, speed varying drives and arc furnaces. The power semiconductor is used to achieve the variation in speed and conversion from one source to another. Mostly active filters and tuned filters are utilized to remove the harmonic included in the source current. The tuned passive filters and inductance inserted in the line reduces the harmonics but at the same time induces the resonances in most of the industrial applications. Due to this, harmonic distortion increases in the source current and voltage. This can be reduced by adding hybrid filter in the system with decreased rating of active filter in high power applications. This article deals with the various topology of hybrid filters. The working of the proposed filter design in variable inductance mode based on the pollution created in the source voltage and current is studied. In the proposed hybrid filter passive filter is tuned with seventh harmonic frequency and connected in series with active filters to reduce the harmonic distortion. DC link voltage and the active filter VA rating could be minimized. The control signal to the filter is derived from p-q theory and space vector pulse width modulation (SVPWM). The performance of the system under study is simulated and noted for the THD percentage before and after the filter is added to the system and the same model is experimented with reduced voltage level.


Author(s):  
Muhammad Murtadha Othman ◽  
W Muhammad Faizol Bin W Mustapha ◽  
Amirul Asyraf Mohd Kamaruzaman ◽  
Aainaa Mohd Arriffin ◽  
Ismail Musirin ◽  
...  

Harmonic is one of the power quality disturbances customarily imminent in an unbalanced electrical system. Harmonic represents as the multiple integral of fundamental frequency of voltage and current inflicting towards the shifting in system frequency causing to a disruptive operation of electrical devices. This paper investigates on the performance of passive filter intrinsically by utilizing the inductor and capacitor electrical components to mitigate harmonic problem emanating from an unbalanced electrical system. In particular, explication in this paper will focus on the optimal parameters specification for the double tuned passive filter that used to overcome the phenomenon of harmonic issue. The two case studies constituting with different number of harmonic orders injected in a system were introduced to distinguish effectiveness of double tuned passive filter in solving the aforesaid problems. The parameters configuration of the passive filter are automatically tuned by the MATLAB® software to reduce the total harmonic distortion incurred in a system designed under the Simulink® software.


Author(s):  
Dasari Vinay

In this paper we are going to see how the DSM PI controller is used to reduce the harmonics in faster. DSM PI controller steps up the voltage to required level. The main aim is to improve the total harmonic distortion. Keywords: Shunt active filter, hybrid active filters, DSM PI controller


Sign in / Sign up

Export Citation Format

Share Document