scholarly journals High-Protein Dietary Supplementation and Nutritional Status Improvement of Malnourished Patients in Hospital Care

Author(s):  
Marcellus Simadibrata ◽  
Fiastuti Witjaksono ◽  
Yohannessa Wulandari ◽  
Raja Mangatur Haloho ◽  
Rabbinu Rangga Pribadi ◽  
...  

Hospital malnutrition is common in Indonesia and other developing countries. In Asia, the prevalence of hospital malnutrition ranges between 27-39%. The causes of malnutrition in hospital care include insufficient food intake and increased catabolic processes due to underlying causes such as metabolic disease, infection, and malignancy. Several studies have demonstrated that malnutrition increases the morbidity and mortality of hospitalized patients, prolongs hospital stay, and delays recovery. Therefore, healthcare providers must recognize malnutrition early by conducting nutritional screening and assessment to prevent worsening of malnutrition and administer the optimal nutritional therapy to patients. Apart from giving a standard diet, high-protein food supplementation in liquid form remains a suitable alternative for patients, especially since it is easily digestible. A high protein diet is associated with a better mortality rate, better weight gain, and improved SGA score in patients.

1997 ◽  
pp. 701-708 ◽  
Author(s):  
A Blackburn ◽  
RA Dressendorfer ◽  
WF Blum ◽  
M Erhard ◽  
G Brem ◽  
...  

To study interactions between insulin-like growth factor-II (IGF-II) and growth hormone (GH) in vivo, we crossed hemizygous transgenic mice carrying phosphoenolpyruvate carboxykinase (PEPCK)-IGF-II fusion genes with hemizygous PEPCK-bovine GH (bGH) transgenic mice. Offspring harbouring both transgenes (IB), the IGF-II transgene (I) or the bGH transgene (B), and non-transgenic littermates (C) were obtained. Blood samples were taken before (end of week 12) and after (end of week 14) the mice had received a diet high in protein and low in carbohydrates to stimulate PEPCK promoter-controlled transgene expression. Mean serum GH concentrations of both B and IB mice corresponded to 900 ng/ml and increased more than twofold (P < 0.001) after 1 week of the high-protein diet. GH concentrations in controls and I mice were less than 20 ng/ml. Serum IGF-II concentrations in I and IB mice were three-to fourfold higher than those in C and B mice. Whereas IGF-II concentrations were not changed by the high-protein diet in the last two groups, serum IGF-II increased significantly in I (P < 0.001) and IB mice (P < 0.05). This increase was significantly (P < 0.05) less pronounced in IB than in C and I mice. Circulating IGF-I concentrations were about twofold (P < 0.001) higher in B and IB than in C and I mice, and showed a tendency to be lower in I than in C and in IB than in B mice when animals were maintained on the standard diet. The high-protein diet did not change circulating IGF-I concentrations in controls and B mice, but resulted in a significant reduction of serum IGF-I concentrations in I (P < 0.05) and IB mice (P < 0.001). Consequently, after PEPCK-IGF-II transgene expression was stimulated, serum IGF-I concentrations were significantly (P < 0.05) lower in I than in C and in IB than in B mice. Serum IGF-binding protein (IGFBP)-2 concentrations were significantly (P < 0.05) higher in I mice than in all other groups when mice were maintained on the standard diet, with a tendency to reduced IGFBP-2 concentrations in B mice. After the high-protein diet, serum IGFBP-2 concentrations did not change in C and I mice, but increased by two- to threefold in B and IB mice (P < 0.001). Serum IGFBP-3 concentrations tended to be greater in B and IB than in C and I mice, but these differences were mostly not significant. IGFBP-4 concentrations were significantly (P < 0.001) increased by GH overproduction in B and IB mice. Our data suggest that the reduction in circulating IGF-I concentrations by increased IGF-II is most probably due to the limited serum IGF binding capacity and the short half-life of free IGFs, rather than to a reduction in GH-dependent IGF-I production. Effects of GH overproduction on serum IGFBP-2 concentrations depend on dietary factors and may be both inhibitory and stimulatory.


1974 ◽  
Vol 142 (2) ◽  
pp. 359-364 ◽  
Author(s):  
J. D. McGivan ◽  
Norah M. Bradford ◽  
J. B. Chappell

1. Citrulline synthesis was measured in mitochondria from rats fed on a standard diet, a high-protein diet, or on glucose. 2. With NH4Cl as the nitrogen source the rate of citrulline synthesis was higher in mitochondria from rats fed on a high-protein diet than in those from rats fed on a standard diet. When rats were fed solely on glucose the rate of synthesis of citrulline from NH4Cl was very low. 3. With glutamate as the nitrogen source the relative rates of citrulline synthesis were much lower than when NH4Cl was present, but similar adaptive changes occurred. 4. The activity of the mitochondrial glutamate-transporting system increased two to three times on feeding rats on a high-protein diet, but the Km for glutamate was unchanged. 5. Adaptive changes in certain intramitochondrial enzymes were also measured. 6. The results were interpreted to indicate that when an excess of substrate was present, citrulline synthesis from NH4Cl was rate-limited by the intramitochondrial concentration of N-acetyl-glutamate, but citrulline synthesis from glutamate was rate-limited primarily by the activity of the glutamate-transporting system.


1987 ◽  
Vol 253 (2) ◽  
pp. F318-F327
Author(s):  
A. Remuzzi ◽  
C. Battaglia ◽  
L. Rossi ◽  
C. Zoja ◽  
G. Remuzzi

Glomerular size-selective properties in animals made nephrotic by adriamycin (ADR) injection and fed standard (20% protein) or high-protein (35% protein) diets were investigated using dextran fractional clearances. To interpret filtration and dextran-sieving data, a theoretical approach previously developed for analysis of experimental data in healthy and nephrotic humans was used. Four types of hypothetical pore-radius distributions were compared in order to establish the best tool for describing membrane pore structure in normal and nephrotic rats. This analysis revealed that a spread distribution of pores, the lognormal probability distribution, is the most adequate in representing membrane intrinsic characteristics. ADR animals on standard diet developed massive proteinuria and a lower glomerular filtration rate (GFR) than control animals. High-protein feeding in ADR rats induced a further increase in urinary protein excretion and in GFR. Dextran fractional clearance was more elevated for larger dextran fractions (greater than 46 A) in ADR animals on the standard diet than in control rats. No differences were observed in dextran-sieving curves between ADR rats on the standard and high-protein diet. Theoretical analysis of filtration and fractional clearance data revealed comparable changes in the intrinsic parameters of glomerular size selectivity in the two groups of nephrotic animals. These observations indicate that increased traffic of plasma proteins through the glomerular capillary wall does not imply, in our experimental condition, a further loss of glomerular size-selective properties. The greater urinary protein excretion of ADR animals on high-protein diet than ADR animals on a standard diet cannot be explained by further impairment of glomerular size selectivity but more likely reflects hemodynamic changes.


2019 ◽  
Vol 20 (7) ◽  
pp. 1547 ◽  
Author(s):  
Ewa Żebrowska ◽  
Mateusz Maciejczyk ◽  
Małgorzata Żendzian-Piotrowska ◽  
Anna Zalewska ◽  
Adrian Chabowski

This is the first study to analyze the impact of high protein diet (HPD) on antioxidant defense, redox status, as well as oxidative damage on both a local and systemic level. Male Wistar rats were divided into two equal groups (n = 9): HPD (44% protein) and standard diet (CON; 24.2% protein). After eight weeks, glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase-1 (SOD-1), reduced glutathione (GSH), uric acid (UA), total antioxidant (TAC)/oxidant status (TOS) as well as advanced glycation end products (AGE), 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) were analyzed in the serum/plasma, cerebral cortex, and hypothalamus of HPD and CON rats. HPD resulted in higher UA concentration and activity of GPx and CAT in the hypothalamus, whereas in the cerebral cortex these parameters remained unchanged. A significantly lower GSH content was demonstrated in the plasma and hypothalamus of HPD rats when compared to CON rats. Both brain structures expressed higher content of 4-HNE and MDA, whereas AGE was increased only in the hypothalamus of HPD animals. Despite the enhancement in antioxidant defense in the hypothalamus, this mechanism does not protect the hypothalamus from oxidative damage in rats. Hypothalamus is more susceptible to oxidative stress caused by HPD.


1927 ◽  
Vol 46 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Theodore S. Moise ◽  
Arthur H. Smith

The effects of the ingestion of diets containing different concentrations of protein on the remaining kidney in adult white rats after a unilateral nephrectomy has been studied. In the animals on the high protein diet (85 per cent casein), actual glomerular and tubular lesions were observed in the kidneys of animals maintained for 90, 120 and 150 days after nephrectomy. In the animals on the standard ration, 18 per cent casein, no significant renal lesions were observed within the experimental period. Spontaneous focal lesions in the kidneys of rats maintained on Sherman's diets "A" and "B" were inconspicuous at the age of 350 days but became progressively more frequent and were commonly observed after 500 days. The animals on the high protein and standard rations were all under 350 days old at the completion of the experiment. It is suggested that the age factor is of importance in that young animals may have greater powers of adaptation in withstanding the injurious effect of high protein rations. The animals on the high protein ration excreted definitely larger quantities of protein in the urine, and showed a higher incidence of casts in periods roughly corresponding to those in which anatomic lesions were observed than did the rats on the standard diet.


2020 ◽  
Vol 5 (2) ◽  
pp. 187
Author(s):  
A Fahmy Arif Tsani ◽  
Alifia Evitarani ◽  
Fillah Fithra Dieny ◽  
Ida Kristiana

High-protein food has a significant impact on reducing hunger conditions and increasing satiety. Not many studies have investigated the impact of differences in a high protein diet on satiety based on sex and nutritional status. The aim of the study is to determine the effects of a high protein diet (animal and plant-based) on satiety based on sex and nutritional status. The experimental research was conducted by pre-post group design. The subjects of this research were 23 adults aged 20-23 years who meet the inclusion and exclusion criteria living in Yogyakarta. Satiety profiles (hunger, fullness, desire to eat, and PFC) were measured using a Visual Analogue Scale (VAS) questionnaire. The categorization of nutritional status is based on BMI. Data were analyzed using independent sample t-test and paired t-test. Based on sex, there was a difference in the fullness component between males and females after consuming animal protein meals (p= 0,001) and plant-based protein meals (p< 0,01). Whereas based on nutritional status, there was no difference in all satiety profiles. In conclusion, men have different satiety from women after consuming a high protein diet.


1997 ◽  
Vol 78 (5) ◽  
pp. 833-843 ◽  
Author(s):  
Suzanne Carreira ◽  
Christian Fueri ◽  
Jean-Claude Chaix ◽  
Antoine Puigserver

Wistar rats fed on either a high-protein or a protein-free diet were examined to determine their pancreatic hydrolase mRNA stabilities in comparison with those of control animals receiving a standard diet. Actinomycin D was used to inhibit transcription and, after isolating the pancreatic RNA, the specific messengers were quantified by performing dot-blot hybridization with cDNA probes. In the rats fed on a high-protein diet, only the half-lives of anionic trypsinogen I and elastase I (EC 3.4.21.36) were affected. Interestingly, when rats were fed on the protein-free diet, most of the hydrolase mRNA half-lives showed changes, except that corresponding to lipase. In these rats, the half-life values of the mRNA coding for anionic trypsinogen I, chymotrypsinogen and procarboxypeptidase B increased, in sharp contrast with those of the amylase and elastase I mRNA, which decreased. These results strongly suggest that the mechanism whereby the biosynthesis of pancreatic hydrolases is regulated, depending on the presence or absence of proteins in the diet, is not unique and provide evidence that the stability of mRNA encoding most, if not all, the hydrolases in pancreatic cells is modulated by the dietary protein content.


2020 ◽  
Vol 318 (3) ◽  
pp. F763-F771 ◽  
Author(s):  
Anna Björnson Granqvist ◽  
Anette Ericsson ◽  
José Sanchez ◽  
Pernilla Tonelius ◽  
Lena William-Olsson ◽  
...  

There is a need for improved animal models that better translate to human kidney disease to predict outcome of pharmacological effects in the patient. The diabetic BTBR ob/ob mouse model mimics key features of early diabetic nephropathy in humans, but with chronic injury limited to glomeruli. To explore if we could induce an accelerated and more advanced disease phenotype that closer translates to human disease, we challenged BTBR ob/ob mice with a high-protein diet (HPD; 30%) and followed the progression of metabolic and renal changes up to 20 wk of age. Animals on the HPD showed enhanced metabolic derangements, evidenced by further increased levels of glucose, HbA1C, cholesterol, and alanine aminotransferase. The urinary albumin-to-creatinine ratio was markedly increased with a 53-fold change compared with lean controls, whereas BTBR ob/ob mice on the standard diet only presented an 8-fold change. HPD resulted in more advanced mesangial expansion already at 14 wk of age compared with BTBR ob/ob mice on the standard diet and also aggravated glomerular pathology as well as interstitial fibrosis. Gene expression analysis revealed that HPD triggered expression of markers of fibrosis and inflammation in the kidney and increased oxidative stress markers in urine. This study showed that HPD significantly aggravated renal injury in BTBR ob/ob mice by further advancing albuminuria, glomerular, and tubulointerstitial pathology by 20 wk of age. This mouse model offers closer translation to humans and enables exploration of new end points for pharmacological efficacy studies that also holds promise to shorten study length.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 751
Author(s):  
Pengfei Gong ◽  
Danielle Bailbé ◽  
Lola Bianchi ◽  
Gaëlle Pommier ◽  
Junjun Liu ◽  
...  

The impact of maternal nutrition on offspring is well documented. However, the implication of pre-conceptional paternal nutrition on the metabolic health of the progeny remains underexplored. Here, we investigated the impact of paternal high-protein diet (HPD, 43.2% protein) consumption on the endocrine pancreas and the metabolic phenotype of offspring. Male Wistar rats were given HPD or standard diet (SD, 18.9% protein) for two months. The progenies (F1) were studied at fetal stage and in adulthood. Body weight, glycemia, glucose tolerance (GT), glucose-induced insulin secretion in vivo (GIIS) and whole-body insulin sensitivity were assessed in male and female F1 offspring. Insulin sensitivity, GT and GIIS were similar between F1 females from HPD (HPD/F1) and SD fathers (SD/F1). Conversely, male HPD/F1 exhibited increased insulin sensitivity (p < 0.05) and decreased GIIS (p < 0.05) compared to male SD/F1. The improvement of insulin sensitivity in HPD/F1 was sustained even after 2 months of high-fat feeding. In male HPD/F1, the β cell mass was preserved and the β cell plasticity, following metabolic challenge, was enhanced compared to SD/F1. In conclusion, we provide the first evidence of a sex-specific impact of paternal HPD on the insulin sensitivity and GIIS of their descendants, demonstrating that changes in paternal nutrition alter the metabolic status of their progeny in adulthood.


2015 ◽  
Vol 4 ◽  
Author(s):  
Patrice L. Capers ◽  
Hyacinth I. Hyacinth ◽  
Shayla Cue ◽  
Prasanthi Chappa ◽  
Tatyana Vikulina ◽  
...  

AbstractKey pathophysiology of sickle cell anaemia includes compensatory erythropoiesis, vascular injury and chronic inflammation, which divert amino acids from tissue deposition for growth/weight gain and muscle formation. We hypothesised that sickle mice maintained on an isoenergetic diet with a high percentage of energy derived from protein (35 %), as opposed to a standard diet with 20 % of energy derived from protein, would improve body composition, bone mass and grip strength. Male Berkeley transgenic sickle mice (S;n8–12) were fed either 20 % (S20) or 35 % (S35) diets for 3 months. Grip strength (BIOSEB meter) and body composition (dual-energy X-ray absorptiometry scan) were measured. After 3 months, control mice had the highest bone mineral density (BMD) and bone mineral content (BMC) (P < 0·005). S35 mice had the largest increase in grip strength. A two-way ANOVA of change in grip strength (P = 0·043) attributed this difference to genotype (P = 0·025) and a trend in type of diet (P = 0·067).l-Arginine (l-Arg) supplementation of the 20 % diet was explored, as a possible mechanism for improvement obtained with the 35 % diet. Townes transgenic sickle mice (TS;n6–9) received 0·8, 1·6, 3·2 or 6·4 %l-Arg based on the same protocol and outcome measures used for the S mice. TS mice fed 1·6 %l-Arg for 3 months (TS1.6) had the highest weight gain, BMD, BMC and lean body mass compared with other groups. TS3.2 mice showed significantly more improvement in grip strength than TS0·8 and TS1.6 mice (P < 0·05). In conclusion, the high-protein diet improved body composition and grip strength. Outcomes observed with TS1.6 and TS3.2 mice, respectively, confirm the hypothesis and reveall-Arg as part of the mechanism.


Sign in / Sign up

Export Citation Format

Share Document