scholarly journals Enhancement in the Tribological and Mechanical Properties of Electroless Nickel-Nanodiamond Coatings Plated on Iron

2017 ◽  
Vol 39 (4) ◽  
pp. 444-451
Author(s):  
Z. Karaguiozova ◽  
J. Kaleicheva ◽  
V. Mishev ◽  
G. Nikolcheva
2016 ◽  
Vol 15 ◽  
pp. 56-63 ◽  
Author(s):  
Mohd Imran Ansari ◽  
Dinesh Singh G. Thakur

Electroless Nickel-Phosphorus (ENi-P) coating is well-known in surface engineering techniques and is preferred in various mechanical, chemical and electronic industries view its extraordinary resistance to wear and corrosion. The paper summerizes the effect of surfactant on the mechanical properties of electroless Nickel-Phosphorus (Ni-P) alloy coating obtained from an acidic bath. The endeavor of this study is to analyse the influence of surfactant Ammonium Lauryl Sulfate (ALS) concentration on the microhardness, surface roughness and wettability of ENi-P deposit on AZ91 Mg alloy substrate. It was observed that there was significant improvement in the rate of deposition, microhardness and wettability, along with reduction in surface roughness (Ra) by addition of ALS surfactant in the chemical bath.


2016 ◽  
Vol 852 ◽  
pp. 49-54
Author(s):  
G. Anand ◽  
R. Dhinakaran ◽  
R. Elansezhian ◽  
N. Alagumurthi

In this paper, synthesis characterization and testing of hybrid polymer composite reinforced with electroless coated glass fiber is reported. The poly vinyl ester based composite is prepared with Electroless nickel phosphorus (Ni-P) coated glass fiber as the reinforcement. The glass fiber is coated with Ni-P by electroless plating method. The electroless Ni-P coating increases coating uniformity which in turn significantly improves properties such as hardness, strength and wear resistance of the glass fiber. Nano additives (0.5 wt.%) such as iron oxide, titanium oxide, copper oxide, aluminum oxide and zinc oxide are added into the matrix as fillers. The influence of different Nano fillers and its effect on the mechanical properties are examined. The result showed that after adding different nano particles, TiO2 exhibited better properties when compared to composites with other nano additives. The experimental results showed that after Ni-P coating on the glass fiber, the ultimate tensile strength and compressive strength improved by 18% and 10% respectively and TiO2 added PMC with 63%, 25% and 5% respectively.


2018 ◽  
Vol 35 (2) ◽  
pp. 158-166 ◽  
Author(s):  
Veronique Vitry ◽  
Elodie Francq ◽  
Luiza Bonin

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1501
Author(s):  
Asier Salicio-Paz ◽  
Ixone Ugarte ◽  
Jordi Sort ◽  
Eva Pellicer ◽  
Eva García-Lecina

Univariate and multivariate optimizations of a novel electroless nickel formulation have been carried out by means of the Taguchi method. From the compositional point of view, adjustment of the complexing agent concentration in solution is crucial for fine-tuning free Ni2+ ions concentration and, in turn, the mechanical properties of the resulting coatings. The Ni (II) concentration and the pH are the main parameters which help restrict the incorporation of phosphorous into the Ni layers. On the other hand, the stirring rate, the pH and the reducing agent concentration are the most influential parameters for the corrosion resistance of the coatings. Multivariate optimization of the electrolyte leads to a set of optimized parameters in which the mechanical properties (hardness and worn volume) of the layers are similar to the optimal values achieved in the univariate optimization, but the corrosion rate is decreased by one order of magnitude.


2016 ◽  
Vol 1133 ◽  
pp. 391-395 ◽  
Author(s):  
Hardinnawirda Kahar ◽  
Zetty Akhtar Abd Malek ◽  
Siti Rabiatull Aisha Idris ◽  
Mahadzir Ishak

Electroless Nickel Boron had been appointed as potential coating in several applications in industry like aeronatics, petrochemical industry, electronics and firearms due to its desirable physical and mechanical properties such as high wear resistance and high hardness including provides uniformity in coating thickness. However, in semiconductor sector, the usage of Nickel Boron as coating layer still insufficient due to lack of study in term of its potential as coating on printed circuit board. This study aims to investigate the mechanical and physical properties of electroless Nickel Boron as potential printed circuit board coating layer. The study conducted by cutting Copper substrates to 50mm x 7mm x 1.5mm and then subjected to surface pre-treatment before soak in Nickel Boron plating bath solution that contain of different concentration of Sodium Borohydrate (NaBH4), 0.4, 0.6,0.8,1.0 and 1.2 g/l. Surface roughness was evaluated using 3D Roughness Reconstruction software. For mechanical properties, the hardness test was conducted by using Vickers Hardness Test MMT-X7 Matsuzawa and surface structure was evaluate using ProgRes C3 IM7200 Optical Microscope and Field Emission Scanning Electron Microscopy (FESEM). It was found that the surface roughness and hardness resistance were affected by Sodium Borohydrate (NaBH4) that correlate with the surface microstructure.


Sign in / Sign up

Export Citation Format

Share Document