scholarly journals PROSES ANALISA DINDING GALIAN BASEMENT 7 LANTAI DENGAN METODE ELEMEN HINGGA

2020 ◽  
Vol 3 (1) ◽  
pp. 49
Author(s):  
Novia Sabina ◽  
Chaidir Anwar Makarim

Limited area for construction can be overcome by build a multi-story building with basement. Basement is quite common in Jakarta, the things that attracted is basement with 7 stories. This basement construction use a diaphragm wall with 1 meter thickness for the retaining wall and installation strut every 4 meter. Deformation for diaphragm wall is calculated by finite element method application and mohr-coloumb soil modeling. This calculation based on soil type from each drill point and water table when it high or common. From the calculation, maximum deformation diaphragm wall for BH-5 when water table high is 235,86 mm and when water table at -3 m is 209,6 mm. Maximum deformation diaphragm wall for BH-7 when water table high is213,9 mm and when water table at -3 m is 197,18 mm. There are several things that need to concern when constructed basement and deep excavation, in case to avoid failure.AbstrakKeterbatasan lahan untuk pembangunan dapat diatasi dengan pembangunan gedung bertingkat yang dilengkapi dengan basement. Pembangunan basement cukup umum di Jakarta ini, salah satu hal yang menarik perhatian adalah pembangunan basement sebanyak 7 lantai. Pembangunan basement ini menggunakan dinding penahan tanah berupa dinding diafragma dengan ketebalan 1 meter dan pemasangan strut setiap 4 meter. Perhitungan deformasi pada dinding penahan tanah ini dilakukan dengan menggunakan aplikasi metode elemen hingga dan permodelan tanah mohr-coloumb Permodelan dilakukan berdasarkan keadaan tanah pada tiap titik bor dan keadaan muka air saat banjir atau kemarau. Dari perhitungan, didapatkan deformasi maksimum dinding diafragma pada titik bor BH-5 pada muka air banjir adalah 235,86 mm dan pada muka air kemarau adalah 209,6 mm. Untuk deformasi maksimum dinding diafragma pada titik bor BH-7 pada muka air banjir adalah 213,9 mm dan pada muka air kemarau adalah 197,18 mm. Pada saat konstruksi basement dan galian dalam, diperlukan beberapa hal yang perlu diperhatikan agar tidak terjadi kegagalan pada saat pembangunan dan penggunaan basement.

2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Ali Arefnia ◽  
Khairul Anuar Kassim ◽  
Houman Sohaei ◽  
Kamarudin Ahmad ◽  
Ahmad Safuan A Rashid

 The failure mechanism of backfill material for retaining wall was studied by performing a numerical analysis using the finite element method. Kaolin is used as backfill material and retaining wall is constructed by Polymer Concrete. The laboratory data of an instrumented cantilever retaining wall are reexamined to confirm an experimental working hypothesis. The obtained laboratory data are the backfill settlement and horizontal displacement of the wall. The observed response demonstrates the backfill settlement and displacement of the retaining wall from the start to completion of loading. In conclusion, numerical modelling results based on computer programming by ABAQUS confirms the experimental results of the physical modelling.  


2018 ◽  
Vol 204 ◽  
pp. 07010
Author(s):  
Andoko ◽  
Nanang Eko Saputro

The combustion of fuel takes place inside the cylinder with the oxygen of the air, producing a very high-pressure combustion gas. The combustion gas does work on the piston and then passes through the connecting rod to the crankshaft. The reciprocating translational motion of the piston may damage the connecting rod. A simulation using ANSYS was performed on each of the three connecting rod materials. Results showed that the maximum deformation occurred in the connecting rod made of structural steel, aluminium alloy, and titanium alloy was 0.239 mm, 0.672 mm, and 0.496 mm, respectively.


2019 ◽  
Vol 8 (4) ◽  
pp. 2656-2661

The design of the Gravity retaining wall (GRW) is a trial and error process. Prevailing conditions of backfill are used to determine the profile of GRW, which proceeds with the selection of provisional dimensions. The optimum section is having factors of safety of stability higher than the allowable values and stresses in the cross-section smaller than permissible. The cross-section is designed to fulfill conditions of stability, subjected to very low stresses. The strength of the material, which is provided in the cross-section remains unutilized. A computer program is developed to find stresses at various locations on the cross-section of GRW using the Finite Element Method (FEM). A discontinuity in the form of a rectangular cavity is introduced in the cross-section of GRW to optimize it. The rectangular cavity is introduced in the cross-section of GRW at different locations. An attempt is made in this paper to find the stress distribution in the gravity retaining wall cross-section and to study the effect of the rectangular cavity on the stress distribution. Two cases representing different locations are considered to study the effect of the cavity. The location of the cavity is distinguished by the parameter w, the effects of cases with varied was 0.2305 (Case-I) and 0.1385 (Case-II) are observed. The cavity, which is provided not only makes the wall structurally efficient but also economically feasible.


2012 ◽  
Vol 535-537 ◽  
pp. 2027-2031 ◽  
Author(s):  
Jian Chun Wu ◽  
Rong Shi

Using dynamic elastic-plastic finite element method, on the base of works together and interaction between loess and flexible retaining wall, 3-D nonlinear FEM (ADINA) is used to analyze and discussed the dynamic response of slope protected by soil nailing retaining wall under the EL-Centro and man-made Lanzhou accelerogram. A model that is capable of simulating the nonlinear static and dynamic elastic-plastic behavior of soil is used to model the soil, and a bilinear elastic-plastic model that has hardening behavior is used to model the soil nailing. Friction-element is employed to describe the soil-structure interaction behavior.The results show that the method is safe and credible. The results of the FEM dynamic analysis can be a useful reference for engineers of the design and construction of the soil nailed wall.


Author(s):  
Della Amelia ◽  
Inda Sumarli ◽  
Ali Iskandar

In a deep excavation construction that adjacent to the existing buildings there is a concern that it will have a bad impact or effect on adjacent buildings.  The effect of deep excavation induced deformation of the existing structures due to ground movements and ground surface settlement behind the wall which can cause a tilt of the building. The objective of this study is to observe the effect of deep excavation (7 storey basement) adjacent to the existing buildings with 7 and 5 storey basement located in South Jakarta. The basement is connected to the basement of the existing building so that the effect of diaphragm wall opening for connecting basement towards the substructures of the existing building is observed. This study was conducted by observing the deformation that occurs in the diaphragm of the existing building, and also observing the internal forces acting on the basement floors slabs of the existing buildings. Observations were made using a three-dimensional finite element program with the most commonly used material model for analysis of deep excavation, The Hardening Soil Model. The analysis was performed with drained conditions with phreatic calculation type and only calculated the static conditions. Results indicate that the deflection that occurs after the final stage of excavation is still within the allowable limit according to the SNI 8460:2017, which is less than 14 centimeters on the diaphragm wall of the existing buildings. Keywords: Deep Excavation; Connecting Basement; Diaphragm Wall; Hardening Soil; Finite Element AbstrakPada suatu konstruksi galian dalam yang berdekatan dengan suatu bangunan lain dikhawatirkan akan memberikan dampak atau efek yang buruk terhadap bangunan di sekitarnya. Efek dari galian dalam tersebut menyebabkan terjadinya deformasi pada struktur dari bangunan di sekitarnya akibat dari pergerakan tanah dan penurunan permukaan tanah di belakang dinding yang dapat menyebabkan bangunan tersebut menjadi miring. Tujuan dari penelitian ini yaitu untuk mengamati pengaruh pekerjaan galian dalam (basement dengan 7 lantai) yang berdekatan dengan bangunan sekitar dengan basement 5 lantai dan 7 lantai yang berlokasi di Jakarta Selatan. Basement yang dimodelkan terkoneksi dengan basement dari bangunan eksisting sehingga diamati pengaruh bukaan dinding diafragma untuk connecting basement terhadap struktur bawah bangunan eksisting. Penelitian ini dilakukan dengan melihat deformasi yang terjadi pada dinding diafragma dari bangunan eksisting, dan juga mengamati gaya-gaya dalam yang bekerja pada pelat lantai basement dari bangunan eksisting. Pengamatan dilakukan dengan menggunakan program elemen hingga tiga dimensi dengan model material yang paling umum digunakan yaitu Hardening Soil untuk analisis galian dalam. Analisis dilakukan dengan kondisi drained dengan tipe kalkulasi phreatic serta hanya memperhitungkan keadaan static. Hasil menunjukkan bahwa defleksi yang terjadi setelah tahapan terakhir pekerjaan galian dalam yaitu masih dalam batas yang diijinkan menurut SNI 8460:2017 yaitu dibawah dari 14 cm pada dinding diafragma bangunan eksisting. 


2012 ◽  
Vol 248 ◽  
pp. 408-412
Author(s):  
Li Li Qian ◽  
Wei Fang Chen ◽  
Wan Tai Ma

An approach to optimize the cutting parameters based on Particle Swarm Algorithm(PSO) and Finite Element Method(FEA) was proposed. A cutting parameters optimization model was established whose design variables are the cutting parameters and objective function is to minimize the maximum deformation. PSO was used to optimize the cutting parameters and FEA was utilized to predict the machining deformation of the thin-walled workpiece. Finally, the entire technique was demonstrated in a case study. The simulation and experimental results show that the approach can be further employed into the practical machining situation.


2011 ◽  
Vol 332-334 ◽  
pp. 2108-2111
Author(s):  
Bin Zheng ◽  
Yong Qi Liu ◽  
Rui Xiang Liu ◽  
Jian Meng

In this paper, with the ANSYS, stress distribution and safety factor of crankshaft were analyzed by using 3D finite element method. The results show that the exposed destructive position is the crankpin and the transition circular bead location of main journal. Maximum stress is 156 MPa. Safety factor is 3.22. Maximum deformation is 0.462 mm. Crankshaft satisfies the design requirement.


Sign in / Sign up

Export Citation Format

Share Document