scholarly journals Detection of Sesame Allergen Traces with Two PCR Assays - The Challenge to Protect Food-Allergic Consumers

Author(s):  
Dimitra Panagiotis Houhoula ◽  
Vasilios Belsis ◽  
Leonidas Georgopoulos ◽  
Virginia Giannou ◽  
Vasiliki R. Kyrana ◽  
...  

The purpose of this study was to investigate the possible presence of sesame in commercial foods normally carrying no warning for the allergen, but which may have been subjected to contamination during processing. One hundred units of widely consumed goods with high potential to contain allergenic substances deriving from nuts were analyzed, using sensitive and capable PCR (C-PCR) and Real Time PCR (RT-PCR) methodologies. Of the products examined, 15 (15.0%) declared the presence of sesame, 36 (36.0%) carried no food allergy label, 44 (44.0%) were marked by the phrase “may contain traces of nuts” and 5 (5.0%) carried the indication “may contain sesame traces”. The sesame-positive products detected using the C-PCR method were 15 (100%), 12 (33.3%), 14 (31.8%) and 3 (60%), respectively. Using the RT-PCR technique, positive results were obtained for 15 (100%), 18 (50.0%), 18 (20.5%) and 5 (100%) samples, respectively. The results indicate that the PCR methods applied are highly sensitive and selective, which makes them suitable for the detection of sesame traces in food samples. In addition, they can be useful for monitoring the effectiveness of cleaning processes in the production units of the food industry.

2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Nawal El Houmami ◽  
Guillaume André Durand ◽  
Janek Bzdrenga ◽  
Anne Darmon ◽  
Philippe Minodier ◽  
...  

ABSTRACTKingella kingaeis a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium using culture and broad-range 16S rRNA gene PCR assays from clinical specimens have proven unsatisfactory; therefore, by the late 2000s, these were gradually phased out to explore the benefits of specific real-time PCR tests targeting thegroELgene and the RTX locus ofK. kingae. However, recent studies showed that real-time PCR (RT-PCR) assays targeting theKingellasp. RTX locus that are currently available for the diagnosis ofK. kingaeinfection lack specificity because they could not distinguish betweenK. kingaeand the recently describedKingella negevensisspecies. Furthermore,in silicoanalysis of thegroELgene from a large collection of 45K. kingaestrains showed that primers and probes fromK. kingaegroEL-based RT-PCR assays display a few mismatches withK. kingae groELvariations that may result in decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative togroEL- and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, aK. kingae-specific RT-PCR assay targeting the malate dehydrogenase (mdh) gene was developed for predicting no mismatch between primers and probe and 18 variants of theK. kingae mdhgene from 20 distinct sequence types ofK. kingae. This novelK. kingae-specific RT-PCR assay demonstrated high specificity and sensitivity and was successfully used to diagnoseK. kingaeinfections and carriage in 104 clinical specimens from children between 7 months and 7 years old.


2020 ◽  
Vol 21 (16) ◽  
pp. 5674
Author(s):  
Cyril Chik-Yan Yip ◽  
Siddharth Sridhar ◽  
Kit-Hang Leung ◽  
Anthony Chin-Ki Ng ◽  
Kwok-Hung Chan ◽  
...  

Sensitive molecular assays are critical for coronavirus disease 2019 (COVID-19) diagnosis. Here, we designed and evaluated two single-tube nested (STN) real-time RT-PCR assays, targeting SARS-CoV-2 RdRp/Hel and N genes. Both STN assays had a low limit of detection and did not cross react with other human coronaviruses and respiratory viruses. Using 213 initial respiratory specimens from suspected COVID-19 patients, the sensitivity of both the STN COVID-19-RdRp/Hel and the STN COVID-19-N assays was 100% (99/99), while that of the comparator non-nested N assay was 95% (94/99). Among 108 follow-up specimens from confirmed COVID-19 patients who tested negative by the non-nested COVID-19-RdRp/Hel assay, 28 (25.9%) were positive for SARS-CoV-2 by the STN COVID-19-RdRp/Hel or the STN COVID-19-N assay. To evaluate the performance of our novel STN assays in pooled specimens, we created four sample pools, with each pool consisting of one low positive specimen and 49 negative specimens. While the non-nested COVID-19-RdRp/Hel assay was positive in only one of four sample pools (25%), both of the STN assays were positive in two of four samples pools (50%). In conclusion, the STN assays are highly sensitive and specific for SARS-CoV-2 detection. Their boosted sensitivity offers advantages in non-traditional COVID-19 testing algorithms such as saliva screening and pooled sample screening during massive screening.


Author(s):  
Roxana Elena Nemescu ◽  
Ramona Gabriela Ursu ◽  
Carmen Mihaela Dorobăț ◽  
Luminița Smaranda Iancu

AbstractMeningococcal infection requires a fast and accurate diagnostic method in order to correctly initiate the antibiotic therapy. The aim of our study was to assess the efficiency of Real Time PCR -Taq Man using sod C gene / N. meningitidis in comparison with the classical methods for the diagnosis of meningococcal infection - direct microscopy, cultivation, latex agglutination and blood culture. We have detected 24/44 (54.54%) patients with meningococcal infection. In both cases of patients with / without previous antibiotic therapy before admission, the AUC (area under curve) had the highest values for RT PCR in CSF and blood analysis. This sod C RT-PCR assay is a highly sensitive and specific method for detection of Neisseria meningitis and it would be useful to include this method like a multiplex in routine testing of patients with clinical meningococcal infection for other etiological agents also.


2007 ◽  
Vol 70 (4) ◽  
pp. 1002-1006 ◽  
Author(s):  
BENJAMIN R. WARREN ◽  
HYUN-GYUN YUK ◽  
KEITH R. SCHNEIDER

This study investigated flow-through immunocapture (FTI), using the Pathatrix device, followed by plating on xylose lysine desoxycholate (XLD) agar (FTI-XLD) or analysis by real-time PCR (FTI-PCR) for the detection of Salmonella on smooth tomato surfaces and in potato salad and ground beef within 8 h. Food samples were inoculated with an appropriate dilution of a five-serovar Salmonella cocktail and enriched for 5 h. Following enrichment, samples were analyzed by the FTIXLD and FTI-PCR methods. Food samples were also analyzed by a modified U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM) Salmonella culture method for comparison. Salmonella inoculated at 100 CFU per tomato or 100 CFU/25 g was detected by the FTI-XLD method in 6, 8, and 4 of 10 samples for tomatoes, potato salad, and ground beef, respectively. Salmonella inoculated at 100 CFU per tomato or 100 CFU/25 g was detected by the FTI-PCR method in 8, 9, and 9 of 10 samples for tomatoes, potato salad, and ground beef, respectively. The FTI-PCR method achieved significantly higher (P < 0.05) detection of Salmonella on tomatoes, whereas the FTI-XLD method achieved significantly lower (P < 0.05) detection of Salmonella in ground beef when compared with the modified BAM Salmonella culture method; however, all other comparisons to the modified BAM method were not significantly different. The FTI-XLD method demonstrated the ability to isolate presumptive Salmonella colonies up to 48 h faster than did the modified BAM Salmonella culture method.


2016 ◽  
Vol 55 (3) ◽  
pp. 735-743 ◽  
Author(s):  
Felicia Roy ◽  
Lillian Mendoza ◽  
Joanne Hiebert ◽  
Rebecca J. McNall ◽  
Bettina Bankamp ◽  
...  

ABSTRACT During measles outbreaks, it is important to be able to rapidly distinguish between measles cases and vaccine reactions to avoid unnecessary outbreak response measures such as case isolation and contact investigations. We have developed a real-time reverse transcription-PCR (RT-PCR) method specific for genotype A measles virus (MeV) (MeVA RT-quantitative PCR [RT-qPCR]) that can identify measles vaccine strains rapidly, with high throughput, and without the need for sequencing to determine the genotype. We have evaluated the method independently in three measles reference laboratories using two platforms, the Roche LightCycler 480 system and the Applied Biosystems (ABI) 7500 real-time PCR system. In comparison to the standard real-time RT-PCR method, the MeVA RT-qPCR showed 99.5% specificity for genotype A and 94% sensitivity for both platforms. The new assay was able to detect RNA from five currently used vaccine strains, AIK-C, CAM-70, Edmonston-Zagreb, Moraten, and Shanghai-191. The MeVA RT-qPCR assay has been used successfully for measles surveillance in reference laboratories, and it could be readily deployed to national and subnational laboratories on a wide scale.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
David C. Tooy ◽  
Janno B. Bernadus ◽  
Angle Sorisi

Abstract: Malaria is one of the most important parasitic disease which is caused by Plasmodium spp. There are approximately 1,2 billion people in the world with high risk of getting malaria. Plasmodium falciparum (P. falciparum) is the cause of tropical malaria or falciparum malaria, and is responsible for most of the mortality rate. Currently, real-time polymerase chain reaction (RT-PCR) is being studied as an alterative of conventional malarian examination. Mangold et al reported that RT-PCR have 94.1% sensitivity and 100% specificity compared to microscopic examination in detecting P. falciparum. The aim of this research is to detect the presence of P. falciparum using RT-PCR in Likupang and Bitung region. This research were using descriptive design to find out the capability of real-time PCR method to detect P. falciparum in Likupang dan Bitung region. The researcher have examined 71 samples which are fulfill the research sample’s criteria. Postive results of P. falciparum found in 18 samples (25,3%) and negative results in 53 samples (74,6%) of total 71 samples with using RT-PCR. No positive results were found in samples from Likupang. There are positive result of P. falciparum in samples from Bitung. It is concluded that RT-PCR method can detect the presence of P. falciparum from the samples obtained from Likupang and Bitung based on the presence of its DNA. This detection efford is done by using 18S rRNA as target gene and ajust specific temperature on the RT-PCR instrument.Keywords: Plasmodium falciparum, Real-time Polymerase Chain Reaction (PCR), DetectionAbstrak: Malaria merupakan salah satu penyakit penting yang disebabkan oleh parasit Plasmodium spp. Kira-kira 1,2 miliar penduduk dunia memiliki risiko tinggi untuk mendapat malaria. Di Indonesia sendiri, terdapat 343.527 kasus terkonfirmasi dan 45 kematian karena malaria. Plasmodium falciparum (P. Falciparum) merupakan penyebab dari malaria tropika atau malaria falsiparum, dan bertanggung jawab atas sebagian besar angka mortalitas. Saat ini Real-Time Polymerase Chain Reaction (RT-PCR) telah banyak diteliti sebagai alternatif dari pemeriksaan malaria. Mangold dkk melaporkan bahwa real-time PCR memiliki nilai sensitivitas 94,1% dan nilai spesifisitas 100% terhadap pemeriksaan mikroskopis dalam mendeteksi P. falciparum. Penelitian bertujuan untuk mendeteksi P. falciparum dengan menggunakan RT-PCR di daerah Likupang dan Bitung. Penelitian ini menggunakan rancangan penelitian deskriptif untuk mengetahui kemampuan metode real-time PCR dalam mendeteksi P. falciparum di daerah Likupang dan Bitung. Tujuan penelitian ini ialah untuk mendeteksi keberadaan P. falciparum dengan menggunakan metode real-time PCR di daerah Likupang dan Bitung. Peneliti memeriksa 71 sampel darah yang memenuhi kriteria sampel penelitian. Hasil positif P. falciparum ditemukan pada 18 sampel (25,3 %) dan hasil negatif pada 53 sampel (74,6 %) dari total 71 sampel dengan menggunakan RT-PCR. Tidak ditemukannya hasil positif P. falciparum pada sampel dari Likupang. Ditemukan hasil positif P. falciparum pada sampel dari Bitung. Simpulan: Metode RT-PCR dapat mendeteksi P. falciparum berdasarkan keberadaan DNA-nya pada sampel yang diperoleh dari daerah Likupang dan Bitung. Deteksi ini berhasil dilakukan dengan menggunakan 18S rRNA sebagai gen target dan pengaturan suhu tertentu pada instrument RT-PCR.Kata kunci: P. falciparum, Real-time Polymerase Chain Reaction (PCR), Detection


2020 ◽  
Vol 9 (2) ◽  
pp. 448
Author(s):  
Ema Komalasari ◽  
Winiati P. Rahayu ◽  
Siti Nurjanah

Pathogenic Escherichia coli (E. coli) has been implicated in a wide range of disease causing infections. It is essential to generate a method for detecting and differentiating each pathotype of E. coli which is more quickly and efficiently by using less reagent. This study aimed to evaluate a SYBR Green multiplex real-time PCR method for detecting four types of pathogenic E. coli. Two of multiplex real-time PCR system, 6-plex and 3-plex, were set to detect six different virulence factors from ETEC, EPEC, EHEC, and EIEC and evaluate the melting curves and specificity compared to simplex method. The results showed that 3-plex rt-PCR method gave more reliable melting curves than 6-plex. The 3-plex rt-PCR also provided similar melting value (Tm) to simplex system. The results of this specificity assay supported the selection of 3-plex rt-PCR conditions for detection of pathogenic E. coli.


2009 ◽  
Vol 72 (11) ◽  
pp. 2433-2435 ◽  
Author(s):  
HAIYAN WANG ◽  
FEI YUAN ◽  
YAJUN WU ◽  
HAIRONG YANG ◽  
BAOLIANG XU ◽  
...  

A real-time PCR method aimed at the gene sequence of the walnut vicilin-like seed storage protein was established for the detection of the allergen walnut in food. The primers and probe were designed based on published methods. The method provided positive results for walnut and negative results for other tested agricultural plant materials including pecan. The intrinsic detection limit of the method was 0.00125 ng of walnut DNA, and the practical detection limit was 0.001% (wt/wt) walnut content in wheat; both of these values are lower than that of previously published methods. Therefore, this real-time PCR method is sufficiently specific and sensitive for the detection of walnut component in food.


Sign in / Sign up

Export Citation Format

Share Document