scholarly journals Dynamic Hypergraph Structure Learning

Author(s):  
Zizhao Zhang ◽  
Haojie Lin ◽  
Yue Gao

In recent years, hypergraph modeling has shown its superiority on correlation formulation among samples and has wide applications in classification, retrieval, and other tasks. In all these works, the performance of hypergraph learning highly depends on the generated hypergraph structure. A good hypergraph structure can represent the data correlation better, and vice versa. Although hypergraph learning has attracted much attention recently, most of existing works still rely on a static hypergraph structure, and little effort concentrates on optimizing the hypergraph structure during the learning process. To tackle this problem, we propose a dynamic hypergraph structure learning method in this paper. In this method, given the originally generated hypergraph structure, the objective of our work is to simultaneously optimize the label projection matrix (the common task in hypergraph learning) and the hypergraph structure itself. More specifically, in this formulation, the label projection matrix is related to the hypergraph structure, and the hypergraph structure is associated with the data correlation from both the label space and the feature space. Here, we alternatively learn the optimal label projection matrix and the hypergraph structure, leading to a dynamic hypergraph structure during the learning process. We have applied the proposed method in the tasks of 3D shape recognition and gesture recognition. Experimental results on 4 public datasets show better performance compared with the state-of-the-art methods. We note that the proposed method can be further applied in other tasks.

Author(s):  
Cheng-Lun Peng ◽  
An Tao ◽  
Xin Geng

Label Distribution Learning (LDL) fits the situations well that focus on the overall distribution of the whole series of labels. The numerical labels of LDL satisfy the integrity probability constraint. Due to LDL's special label domain, existing label embedding algorithms that focus on embedding of binary labels are thus unfit for LDL. This paper proposes a specially designed approach MSLP that achieves label embedding for LDL by Multi-Scale Locality Preserving (MSLP). Specifically, MSLP takes the locality information of data in both the label space and the feature space into account with different locality granularity. By assuming an explicit mapping from the features to the embedded labels, MSLP does not need an additional learning process after completing embedding. Besides, MSLP is insensitive to the existing of data points violating the smoothness assumption, which is usually caused by noises. Experimental results demonstrate the effectiveness of MSLP in preserving the locality structure of label distributions in the embedding space and show its superiority over the state-of-the-art baseline methods.


Author(s):  
Rong-Cheng Tu ◽  
Xian-Ling Mao ◽  
Wei Wei

Most of the unsupervised hashing methods usually map images into semantic similarity-preserving hash codes by constructing local semantic similarity structure as guiding information, i.e., treating each point similar to its k nearest neighbours. However, for an image, some of its k nearest neighbours may be dissimilar to it, i.e., they are noisy datapoints which will damage the retrieval performance. Thus, to tackle this problem, in this paper, we propose a novel deep unsupervised hashing method, called MLS3RDUH, which can reduce the noisy datapoints to further enhance retrieval performance. Specifically, the proposed method first defines a novel similarity matrix by utilising the intrinsic manifold structure in feature space and the cosine similarity of datapoints to reconstruct the local semantic similarity structure. Then a novel log-cosh hashing loss function is used to optimize the hashing network to generate compact hash codes by incorporating the defined similarity as guiding information. Extensive experiments on three public datasets show that the proposed method outperforms the state-of-the-art baselines.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 567
Author(s):  
Donghun Yang ◽  
Kien Mai Mai Ngoc ◽  
Iksoo Shin ◽  
Kyong-Ha Lee ◽  
Myunggwon Hwang

To design an efficient deep learning model that can be used in the real-world, it is important to detect out-of-distribution (OOD) data well. Various studies have been conducted to solve the OOD problem. The current state-of-the-art approach uses a confidence score based on the Mahalanobis distance in a feature space. Although it outperformed the previous approaches, the results were sensitive to the quality of the trained model and the dataset complexity. Herein, we propose a novel OOD detection method that can train more efficient feature space for OOD detection. The proposed method uses an ensemble of the features trained using the softmax-based classifier and the network based on distance metric learning (DML). Through the complementary interaction of these two networks, the trained feature space has a more clumped distribution and can fit well on the Gaussian distribution by class. Therefore, OOD data can be efficiently detected by setting a threshold in the trained feature space. To evaluate the proposed method, we applied our method to various combinations of image datasets. The results show that the overall performance of the proposed approach is superior to those of other methods, including the state-of-the-art approach, on any combination of datasets.


Author(s):  
yifan yang ◽  
Lorenz S Cederbaum

The low-lying electronic states of neutral X@C60(X=Li, Na, K, Rb) have been computed and analyzed by employing state-of-the-art high level many-electron methods. Apart from the common charge-separated states, well known...


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6780
Author(s):  
Zhitong Lai ◽  
Rui Tian ◽  
Zhiguo Wu ◽  
Nannan Ding ◽  
Linjian Sun ◽  
...  

Pyramid architecture is a useful strategy to fuse multi-scale features in deep monocular depth estimation approaches. However, most pyramid networks fuse features only within the adjacent stages in a pyramid structure. To take full advantage of the pyramid structure, inspired by the success of DenseNet, this paper presents DCPNet, a densely connected pyramid network that fuses multi-scale features from multiple stages of the pyramid structure. DCPNet not only performs feature fusion between the adjacent stages, but also non-adjacent stages. To fuse these features, we design a simple and effective dense connection module (DCM). In addition, we offer a new consideration of the common upscale operation in our approach. We believe DCPNet offers a more efficient way to fuse features from multiple scales in a pyramid-like network. We perform extensive experiments using both outdoor and indoor benchmark datasets (i.e., the KITTI and the NYU Depth V2 datasets) and DCPNet achieves the state-of-the-art results.


Author(s):  
Yunhong Gong ◽  
Yanan Sun ◽  
Dezhong Peng ◽  
Peng Chen ◽  
Zhongtai Yan ◽  
...  

AbstractThe COVID-19 pandemic has caused a global alarm. With the advances in artificial intelligence, the COVID-19 testing capabilities have been greatly expanded, and hospital resources are significantly alleviated. Over the past years, computer vision researches have focused on convolutional neural networks (CNNs), which can significantly improve image analysis ability. However, CNN architectures are usually manually designed with rich expertise that is scarce in practice. Evolutionary algorithms (EAs) can automatically search for the proper CNN architectures and voluntarily optimize the related hyperparameters. The networks searched by EAs can be used to effectively process COVID-19 computed tomography images without expert knowledge and manual setup. In this paper, we propose a novel EA-based algorithm with a dynamic searching space to design the optimal CNN architectures for diagnosing COVID-19 before the pathogenic test. The experiments are performed on the COVID-CT data set against a series of state-of-the-art CNN models. The experiments demonstrate that the architecture searched by the proposed EA-based algorithm achieves the best performance yet without any preprocessing operations. Furthermore, we found through experimentation that the intensive use of batch normalization may deteriorate the performance. This contrasts with the common sense approach of manually designing CNN architectures and will help the related experts in handcrafting CNN models to achieve the best performance without any preprocessing operations


2020 ◽  
Vol 17 (3) ◽  
pp. 849-865
Author(s):  
Zhongqin Bi ◽  
Shuming Dou ◽  
Zhe Liu ◽  
Yongbin Li

Neural network methods have been trained to satisfactorily learn user/product representations from textual reviews. A representation can be considered as a multiaspect attention weight vector. However, in several existing methods, it is assumed that the user representation remains unchanged even when the user interacts with products having diverse characteristics, which leads to inaccurate recommendations. To overcome this limitation, this paper proposes a novel model to capture the varying attention of a user for different products by using a multilayer attention framework. First, two individual hierarchical attention networks are used to encode the users and products to learn the user preferences and product characteristics from review texts. Then, we design an attention network to reflect the adaptive change in the user preferences for each aspect of the targeted product in terms of the rating and review. The results of experiments performed on three public datasets demonstrate that the proposed model notably outperforms the other state-of-the-art baselines, thereby validating the effectiveness of the proposed approach.


Author(s):  
Jie Yang ◽  
Zhiquan Qi ◽  
Yong Shi

This paper develops a multi-task learning framework that attempts to incorporate the image structure knowledge to assist image inpainting, which is not well explored in previous works. The primary idea is to train a shared generator to simultaneously complete the corrupted image and corresponding structures --- edge and gradient, thus implicitly encouraging the generator to exploit relevant structure knowledge while inpainting. In the meantime, we also introduce a structure embedding scheme to explicitly embed the learned structure features into the inpainting process, thus to provide possible preconditions for image completion. Specifically, a novel pyramid structure loss is proposed to supervise structure learning and embedding. Moreover, an attention mechanism is developed to further exploit the recurrent structures and patterns in the image to refine the generated structures and contents. Through multi-task learning, structure embedding besides with attention, our framework takes advantage of the structure knowledge and outperforms several state-of-the-art methods on benchmark datasets quantitatively and qualitatively.


Author(s):  
Peng Zhang ◽  
Jianye Hao ◽  
Weixun Wang ◽  
Hongyao Tang ◽  
Yi Ma ◽  
...  

Reinforcement learning agents usually learn from scratch, which requires a large number of interactions with the environment. This is quite different from the learning process of human. When faced with a new task, human naturally have the common sense and use the prior knowledge to derive an initial policy and guide the learning process afterwards. Although the prior knowledge may be not fully applicable to the new task, the learning process is significantly sped up since the initial policy ensures a quick-start of learning and intermediate guidance allows to avoid unnecessary exploration. Taking this inspiration, we propose knowledge guided policy network (KoGuN), a novel framework that combines human prior suboptimal knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller to represent human knowledge and a refine module to finetune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing policy-based reinforcement learning algorithm. We conduct experiments on several control tasks. The empirical results show that our approach, which combines suboptimal human knowledge and RL, achieves significant improvement on learning efficiency of flat RL algorithms, even with very low-performance human prior knowledge.


Sign in / Sign up

Export Citation Format

Share Document