scholarly journals Curriculum Adversarial Training

Author(s):  
Qi-Zhi Cai ◽  
Chang Liu ◽  
Dawn Song

Recently, deep learning has been applied to many security-sensitive applications, such as facial authentication. The existence of adversarial examples hinders such applications. The state-of-the-art result on defense shows that adversarial training can be applied to train a robust model on MNIST against adversarial examples; but it fails to achieve a high empirical worst-case accuracy on a more complex task, such as CIFAR-10 and SVHN. In our work, we propose curriculum adversarial training (CAT) to resolve this issue. The basic idea is to develop a curriculum of adversarial examples generated by attacks with a wide range of strengths. With two techniques to mitigate the catastrophic forgetting and the generalization issues, we demonstrate that CAT can improve the prior art's empirical worst-case accuracy by a large margin of 25% on CIFAR-10 and 35% on SVHN. At the same, the model's performance on non-adversarial inputs is comparable to the state-of-the-art models.

2021 ◽  
pp. 1-11
Author(s):  
Tianshi Mu ◽  
Kequan Lin ◽  
Huabing Zhang ◽  
Jian Wang

Deep learning is gaining significant traction in a wide range of areas. Whereas, recent studies have demonstrated that deep learning exhibits the fatal weakness on adversarial examples. Due to the black-box nature and un-transparency problem of deep learning, it is difficult to explain the reason for the existence of adversarial examples and also hard to defend against them. This study focuses on improving the adversarial robustness of convolutional neural networks. We first explore how adversarial examples behave inside the network through visualization. We find that adversarial examples produce perturbations in hidden activations, which forms an amplification effect to fool the network. Motivated by this observation, we propose an approach, termed as sanitizing hidden activations, to help the network correctly recognize adversarial examples by eliminating or reducing the perturbations in hidden activations. To demonstrate the effectiveness of our approach, we conduct experiments on three widely used datasets: MNIST, CIFAR-10 and ImageNet, and also compare with state-of-the-art defense techniques. The experimental results show that our sanitizing approach is more generalized to defend against different kinds of attacks and can effectively improve the adversarial robustness of convolutional neural networks.


2020 ◽  
Vol 34 (05) ◽  
pp. 8392-8400 ◽  
Author(s):  
Kai Liu ◽  
Xin Liu ◽  
An Yang ◽  
Jing Liu ◽  
Jinsong Su ◽  
...  

Lacking robustness is a serious problem for Machine Reading Comprehension (MRC) models. To alleviate this problem, one of the most promising ways is to augment the training dataset with sophisticated designed adversarial examples. Generally, those examples are created by rules according to the observed patterns of successful adversarial attacks. Since the types of adversarial examples are innumerable, it is not adequate to manually design and enrich training data to defend against all types of adversarial attacks. In this paper, we propose a novel robust adversarial training approach to improve the robustness of MRC models in a more generic way. Given an MRC model well-trained on the original dataset, our approach dynamically generates adversarial examples based on the parameters of current model and further trains the model by using the generated examples in an iterative schedule. When applied to the state-of-the-art MRC models, including QANET, BERT and ERNIE2.0, our approach obtains significant and comprehensive improvements on 5 adversarial datasets constructed in different ways, without sacrificing the performance on the original SQuAD development set. Moreover, when coupled with other data augmentation strategy, our approach further boosts the overall performance on adversarial datasets and outperforms the state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


2021 ◽  
Vol 11 (3) ◽  
pp. 1093
Author(s):  
Jeonghyun Lee ◽  
Sangkyun Lee

Convolutional neural networks (CNNs) have achieved tremendous success in solving complex classification problems. Motivated by this success, there have been proposed various compression methods for downsizing the CNNs to deploy them on resource-constrained embedded systems. However, a new type of vulnerability of compressed CNNs known as the adversarial examples has been discovered recently, which is critical for security-sensitive systems because the adversarial examples can cause malfunction of CNNs and can be crafted easily in many cases. In this paper, we proposed a compression framework to produce compressed CNNs robust against such adversarial examples. To achieve the goal, our framework uses both pruning and knowledge distillation with adversarial training. We formulate our framework as an optimization problem and provide a solution algorithm based on the proximal gradient method, which is more memory-efficient than the popular ADMM-based compression approaches. In experiments, we show that our framework can improve the trade-off between adversarial robustness and compression rate compared to the existing state-of-the-art adversarial pruning approach.


1987 ◽  
Vol 60 (3) ◽  
pp. 381-416 ◽  
Author(s):  
B. S. Nau

Abstract The understanding of the engineering fundamentals of rubber seals of all the various types has been developing gradually over the past two or three decades, but there is still much to understand, Tables V–VII summarize the state of the art. In the case of rubber-based gaskets, the field of high-temperature applications has scarcely been touched, although there are plans to initiate work in this area both in the U.S.A. at PVRC, and in the U.K., at BHRA. In the case of reciprocating rubber seals, a broad basis of theory and experiment has been developed, yet it still is not possible to design such a seal from first principles. Indeed, in a comparative series of experiments run recently on seals from a single batch, tested in different laboratories round the world to the same test procedure, under the aegis of an ISO working party, a very wide range of values was reported for leakage and friction. The explanation for this has still to be ascertained. In the case of rotary lip seals, theories and supporting evidence have been brought forward to support alternative hypotheses for lubrication and sealing mechanisms. None can be said to have become generally accepted, and it remains to crystallize a unified theory.


Author(s):  
Usman Ahmed ◽  
Jerry Chun-Wei Lin ◽  
Gautam Srivastava

Deep learning methods have led to a state of the art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders to collaborate. However, limited labelled data set limits the deep learning algorithm to generalize for one domain into another. To handle the problem, meta-learning helps to learn from a small set of data. We proposed a meta learning-based image segmentation model that combines the learning of the state-of-the-art model and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segments part and remove noise from the new test image. The proposed model can achieve 0.94 precision and 0.92 recall. The ability to increase 3.3% among the state-of-the-art algorithms.


2021 ◽  
Vol 14 (11) ◽  
pp. 1950-1963
Author(s):  
Jie Liu ◽  
Wenqian Dong ◽  
Qingqing Zhou ◽  
Dong Li

Cardinality estimation is a fundamental and critical problem in databases. Recently, many estimators based on deep learning have been proposed to solve this problem and they have achieved promising results. However, these estimators struggle to provide accurate results for complex queries, due to not capturing real inter-column and inter-table correlations. Furthermore, none of these estimators contain the uncertainty information about their estimations. In this paper, we present a join cardinality estimator called Fauce. Fauce learns the correlations across all columns and all tables in the database. It also contains the uncertainty information of each estimation. Among all studied learned estimators, our results are promising: (1) Fauce is a light-weight estimator, it has 10× faster inference speed than the state of the art estimator; (2) Fauce is robust to the complex queries, it provides 1.3×--6.7× smaller estimation errors for complex queries compared with the state of the art estimator; (3) To the best of our knowledge, Fauce is the first estimator that incorporates uncertainty information for cardinality estimation into a deep learning model.


Sign in / Sign up

Export Citation Format

Share Document