scholarly journals The Influence of Temperature and Atmosphere on Young's Modulus of Porous SiC.

1995 ◽  
Vol 42 (4) ◽  
pp. 474-478 ◽  
Author(s):  
Noboru Miyata ◽  
Youichi Ishida ◽  
Tatsuya Shiogai ◽  
Yohtaro Matsuo

In these ‘Proceedings,’ I described some experiments on the influence of temperature on the value of Young’s Modulus for various metals. The results showed that the more fusible the metal, the greater was the variation of the modulus with temperature, and suggested that, roughly, the decrement of the modulus for a given rise of temperature was equal to the ratio of the modulus at absolute zero to the melting temperature and a constant ( i. e. d M/ dθ = M 0 /( θ n + θ ')). Since Young’s Modulus is a complex constant, involving both rigidity and volume elasticity, it seemed worth while to examine the temperature effect on rigidity alone, and with this object in view I have recently carried out a further series of experiments on most of the metals previously tested. The apparatus used was a torsion-balance, shown diagrammatically in fig. 1. A vertical rod, A, is suspended by a long fine wire, B, and the test piece, C, in the form of a wire or narrow strip of plate, is clamped to the lower end of A, and also to the fixed support, D. The whole of this part of the balance can be immersed in a bath of fluid at any required temperature.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7572
Author(s):  
Hongwei Wang ◽  
Yongyan Wang ◽  
Xi Fu

In this paper, destructive compression tests under the coupled influence of temperatures (20–60 °C) and confining pressures (0–7 MPa) were carried out on rock-like material with pre-existing crack to explore the deformation and strength characteristics. The stress–strain curves of rock-like material under the coupled influence of temperatures and confining pressures were obtained. Meanwhile, the correlations of peak stress, peak strain, and average Young’s modulus with temperatures and confining pressures were obtained. The results of the experiments indicate that, firstly, the compressive strength decreased and the deformation increased due to the influence of pre-existing cracks; the combined effect of initial cracks, temperature, and confining pressure gave rise to a more complicated mechanism of soft rock deformation. Secondly, the deformation of rock-like material was affected by initial cracks, confining pressures, and temperatures, but the influence of temperature was lower than that of confining pressure and initial crack. The failure mode of rock-like material was brittle at the confining pressure of 0 and 1 MPa and plastic at the confining pressure of 5 and 7 MPa. The critical confining pressure value of failure mode for rock-like material was 3 MPa. Thirdly, the peak strength and peak strain of rock-like material increased with confining pressure. Temperature had less influence on the rock-like material strength and peak strain than confining pressure. Lastly, Young’s modulus decreased with temperature and confining pressure.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


2021 ◽  
Vol 54 (3) ◽  
pp. 1149-1149
Author(s):  
Zhibo Duan ◽  
Frédéric Skoczylas ◽  
Chuanrui Wang ◽  
Jean Talandier

Sign in / Sign up

Export Citation Format

Share Document