scholarly journals Fabrication of ZrO2 Solid Solution Ceramics Containing Al2O3 Having High Bending Strength (σb≥1 GPa) and High Fracture Toughness (KIC≥20 MPa·m1/2) Simultaneously by Pulsed Electric-current Pressure Sintering (PECPS)

2011 ◽  
Vol 58 (12) ◽  
pp. 727-732
Author(s):  
Kengo Shibaya ◽  
Hideyuki Sato ◽  
Hiroyuki Matsuda ◽  
Katsuya Takaoka ◽  
Masaki Kato ◽  
...  
2007 ◽  
Vol 561-565 ◽  
pp. 527-530 ◽  
Author(s):  
Hirota Ken ◽  
Takaya Endo ◽  
Kato Masaki ◽  
Shingo Nakane ◽  
Toshiyuki Nishimura ◽  
...  

Dense zirconium boride (ZrB2)-based materials with and without tungsten (W) have been fabricated directly from mixtures of constituent elemental powders by pulsed electric current pressure sintering (PECPS) at 1800°C for 10 min under 30 MPa in a vacuum. Formation processes of monolithic, W-doped ZrB2 solid solutions (Zr1-xWx)B2 (0<x≤0.12), and composites consisting of ZrB2(ss) and WB2 were investigated. Their mechanical properties of Vickers hardness (Hv), fracture toughness (KIC), and bending strength (σb) at room temperature were evaluated. Solid solution and composite materials gave higher Hv (~20.7 GPa), KIC (∼4.4 MPam1/2), and σb (~600 and 690 MPa for the former and the latter, respectively) than those (14.1 GPa, 3.21 MPam1/2, and ~500 MPa) of the monolithic ZrB2 fabricated under the same conditions. Furthermore, the latter two materials exhibited excellent high-temperature σb values (~550-600 MPa) up to 1600°C in N2, in comparison with that (~320 MPa) of monolithic ZrB2 materials.


2014 ◽  
Vol 602-603 ◽  
pp. 536-539
Author(s):  
Hai Bin Sun ◽  
Yu Jun Zhang ◽  
Qi Song Li

High hardness, high strength, high fracture toughness and low density are required for novel bulletproof materials. B4C/SiC composite ceramic is one of the most potential candidates. In this study, B4C/SiC composite ceramic was prepared by reaction sintering. The influence of B4C content, species and content of carbon, sintering temperature on the mechanical properties of B4C/SiC composite ceramic were studied. A high performance B4C/SiC composite ceramic was sintered at 1750°C for 30 min. Phenolic resin and carbon black were both chosen as carbon sources, whose favorable contents were 10wt%, 5wt%, respectively. The density of sintered bodies reduces with B4C content increases. To some extent, fracture toughness, bending strength improve initially and then deteriorate with the increase of B4C content whose optimal amount is 30wt%. The optimal fracture toughness and bending strength of the B4C/SiC composite ceramic are 5.07MPa·m1/2 and 487MPa, respectively. Meanwhile, the Viker-hardness of the sintered body is 30.2GPa, the density is as low as 2.82g/cm3.


2020 ◽  
Author(s):  
Xingheng Yan ◽  
Xingui Zhou ◽  
Honglei Wang

Abstract B4C-TiB2 composite ceramics with ultra-high fracture toughness were successfully prepared via spark plasma sintering at 1900℃ using B4C and Ti3SiC2 as raw materials. The results show that compared with pure B4C ceramics sintered by SPS, the hardness of B4C-TiB2 composite ceramics is decreased, but the flexural strength and fracture toughness are significantly improved, especially the fracture toughness has been improved by leaps and bounds. When the content of Ti3SiC2 is 30vol.%, the B4C-TiB2 composite ceramic has the best comprehensive mechanical properties: hardness, bending strength and fracture toughness are 27.28 GPa, 405.11 MPa and 18.94 MPa·m1/2, respectively. The fracture mode of the B4C-TiB2 composite ceramics is a mixture of transgranular fracture and intergranular fracture. Two main two reasons for the ultra-high fracture toughness are the existence of lamellar graphite at the grain boundary, and the formation of a three-dimensional interpenetrating network covering the whole composite.


2020 ◽  
Author(s):  
Xingheng Yan ◽  
Xingui Zhou ◽  
Honglei Wang

Abstract B4C-TiB2 composite ceramics with ultra-high fracture toughness were successfully prepared via spark plasma sintering using B4C and 30 vol.% Ti3SiC2 as raw materials at different sintering temperatures. The results show that compared with pure B4C ceramics sintered by SPS, the flexural strength and fracture toughness are significantly improved, especially the fracture toughness has been improved by leaps and bounds. When the sintering temperature is 1900 ℃, the B4C-TiB2 composite ceramic has the best comprehensive mechanical properties: hardness, bending strength and fracture toughness are 27.28 GPa, 405.11 MPa and 18.94 MPa·m1/2, respectively. The main two reasons for the ultra-high fracture toughness are the formation of TiB2 three-dimensional network covering the whole composites, and the existence of lamellar graphite at the grain boundary.


2020 ◽  
Vol 990 ◽  
pp. 244-249
Author(s):  
Lydia Anggraini

Lightweight ultra-fine grained (<1 μm size) SiC-ZrO2(3Y2O3) composites, with a combination of high hardness, high bending strength and high fracture toughness, were successfully prepared by high energy mechanical milling followed by heat treatment. The SiC-ZrO2(3Y2O3) composites exhibitied high hardness (1707 MPa), high bending strengh (as high as 1689 MPa) and high fracture toughness (up to approximately 12.6 MPa.m1/2). Such a combination of mechanical properties was attributed to the fine microstructure with a distinct feature consisting of almost continuous network of ZrO2(3Y2O3) phase around SiC grains, or we call harmonic microstructure. It has been demonstrated that a combination of these unique microstructural characteristics was very effective in supressing the initiation of cracks and governing the path of their subsequent growth during fracture, leading to excellent combination of mechanical properties.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4616
Author(s):  
Xingheng Yan ◽  
Xingui Zhou ◽  
Honglei Wang

B4C–TiB2 composite ceramics with ultra-high fracture toughness were successfully prepared via spark plasma sintering (SPS) at 1900 °C using B4C and Ti3SiC2 as raw materials. The results showed that compared with pure B4C ceramics sintered by SPS, the hardness of B4C–TiB2 composite ceramics was decreased, but the flexural strength and fracture toughness were significantly improved; the fracture toughness especially was greatly improved. When the content of Ti3SiC2 was 30 vol.%, the B4C–TiB2 composite ceramic had the best comprehensive mechanical properties: hardness, bending strength and fracture toughness were 27.28 GPa, 405.11 MPa and 18.94 MPa·m1/2, respectively. The fracture mode of the B4C–TiB2 composite ceramics was a mixture of transgranular fracture and intergranular fracture. Two main reasons for the ultra-high fracture toughness were the existence of lamellar graphite at the grain boundary, and the formation of a three-dimensional interpenetrating network covering the whole composite.


1993 ◽  
Vol 12 (17) ◽  
Author(s):  
S. Inamura ◽  
M. Miyamoto ◽  
Y. Imaida ◽  
M. Takagawa ◽  
K. Hirota ◽  
...  

Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
2018 ◽  
Vol 67 (9) ◽  

Abstract Ferrium M54 was designed to create a cost-effective, ultra high-strength, high-fracture toughness material with a high resistance to stress-corrosion cracking for use in structural applications. This datasheet provides information on composition, hardness, and tensile properties as well asfatigue. Filing Code: SA-822. Producer or source: QuesTek Innovations, LLC.


2015 ◽  
Vol 83 (3) ◽  
Author(s):  
Zhuo Ma ◽  
Xiangchao Feng ◽  
Wei Hong

Consisting of stretchable and flexible cell walls or ligaments, soft elastic foams exhibit extremely high fracture toughness. Using the analogy between the cellular structure and the network structure of rubbery polymers, this paper proposes a scaling law for the fracture energy of soft elastic foam. To verify the scaling law, a phase-field model for the fracture processes in soft elastic structures is developed. The numerical simulations in two-dimensional foam structures of various unit-cell geometries have all achieved good agreement with the scaling law. In addition, the dependences of the macroscopic fracture energy on geometric parameters such as the network connectivity and spatial orientation have also been revealed by the numerical results. To further enhance the fracture toughness, a type of soft foam structures with nonstraight ligaments or folded cell walls has been proposed and its performance studied numerically. Simulations have shown that an effective fracture energy one order of magnitude higher than the base material can be reached by using the soft foam structure.


Sign in / Sign up

Export Citation Format

Share Document