Simultaneous Synthesis and Consolidation of W-Added ZrB2 by Pulsed Electric Current Pressure Sintering and their Mechanical Properties

2007 ◽  
Vol 561-565 ◽  
pp. 527-530 ◽  
Author(s):  
Hirota Ken ◽  
Takaya Endo ◽  
Kato Masaki ◽  
Shingo Nakane ◽  
Toshiyuki Nishimura ◽  
...  

Dense zirconium boride (ZrB2)-based materials with and without tungsten (W) have been fabricated directly from mixtures of constituent elemental powders by pulsed electric current pressure sintering (PECPS) at 1800°C for 10 min under 30 MPa in a vacuum. Formation processes of monolithic, W-doped ZrB2 solid solutions (Zr1-xWx)B2 (0<x≤0.12), and composites consisting of ZrB2(ss) and WB2 were investigated. Their mechanical properties of Vickers hardness (Hv), fracture toughness (KIC), and bending strength (σb) at room temperature were evaluated. Solid solution and composite materials gave higher Hv (~20.7 GPa), KIC (∼4.4 MPam1/2), and σb (~600 and 690 MPa for the former and the latter, respectively) than those (14.1 GPa, 3.21 MPam1/2, and ~500 MPa) of the monolithic ZrB2 fabricated under the same conditions. Furthermore, the latter two materials exhibited excellent high-temperature σb values (~550-600 MPa) up to 1600°C in N2, in comparison with that (~320 MPa) of monolithic ZrB2 materials.

2010 ◽  
Vol 62 ◽  
pp. 197-202
Author(s):  
Hirota Ken ◽  
Takaoka Katsuya ◽  
Murase Yasushi ◽  
Kato Masaki

Synthesis of dense materials with the compositions of Al2O3/Mo2N=100/0 ~ 40/60 vol% has been attempted directly from Al2O3/Mo mixed raw powder compacts using capsule-free N2 hot isostatic pressing (HIP). During HIPing [1500°C/(16~20)MPa]/1h], solid/gas reaction between Mo and N2 was introduced to form Mo2N. Most sintered composites consisting of only Al2O3 and Mo2N phases reached a higher relative density than 98.0% with closed pores nevertheless capsule-free HIPing. Distribution of Mo2N particles just formed suppressed the grain growth of Al2O3 during sintering. Mechanical properties, such as bending strength (Σb), Vickers hardness (HV), fracture toughness (K1C), and other properties have been evaluated as a function of their compositions. The best mechanical values of Σb (c.a. 573 MPa), HV (c.a. 20.3 GPa) and K1C (c.a. 5.00 MPa・m1/2) were attained at the composition of Al2O3/Mo2N=90/10 vol%, due to a high density (98.6%) and small grain size of Al2O3 matrix (Gs c.a. 4.70 μm). Further addition of Mo2N reduced the sinterability of matrix grains, resulting in low densities of around 90% at the 40/60 vol% composition.


2012 ◽  
Vol 527 ◽  
pp. 101-106 ◽  
Author(s):  
Erkka Kannisto ◽  
M. Erkin Cura ◽  
Erkki Levänen ◽  
Simo Pekka Hannula

To study the microstructure and mechanical properties of alumina nanocomposites, Al2O3/2.5 vol.% Ni and Al2O3/10 vol.% ZrO2 nanocomposites were consolidated by pulsed electric current sintering (PECS). Fracture toughness was found to increase by 13 % and 16 % respectively compared to reference alumina. Hardness increased slightly in Al2O3/Ni because of a fraction of nickel particles under the critical size (2 following the rule of mixtures. By investigating the results, causes of improved mechanical properties were critically evaluated.


1994 ◽  
Vol 364 ◽  
Author(s):  
B. P. Bewlay ◽  
M. R. Jackson ◽  
W. J. Reeder ◽  
H. A. Lipsitt

AbstractIn-situ composites based on binary Nb-Si alloys and consisting of a Nb solid solution with Nb3Si or Nb5Si3 have shown a promising combination of low temperature and high temperature mechanical properties. The environmental resistance and room temperature fracture toughness of these composites can be further enhanced by additions such as Ti, Hf, Cr, and Al. In the present study, ternary Nb-Ti-Si alloys were prepared by directional solidification to generate aligned two and three phase composites containing a Nb solid solution with Nb3Si and/or Nb5Si3. The present paper will describe microstructures, phase equilibria and fracture toughness of these composites. The improvement in the room temperature fracture toughness over binary Nb-Nb5Si3 composites is discussed.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2016 ◽  
Vol 721 ◽  
pp. 419-424
Author(s):  
M. Erkin Cura ◽  
Vivek Kumar Singh ◽  
Panu Viitaharju ◽  
Joonas Lehtonen ◽  
Simo Pekka Hannula

Chromium oxide is a promising material for applications where excellent corrosion resistance, high hardness, and high wear resistance are needed. However, its use is limited because of low fracture toughness. Improvement of fracture toughness of chromium oxide while maintaining its afore mentioned key properties is therefore of high interest. In this communication we study the possibility of increasing the toughness of pulsed electric current sintered (PECS) chromium oxide by the addition of graphene oxide (GO). The indentation fracture toughness was improved markedly with the addition of graphene oxide. Materials prepared by direct chemical homogenization had better fracture toughness. In composites with 10 vol.% GO piling of thin graphene oxide layers resulted in the formation of graphite layers between Cr2O3 and in carbide formation, which were observed to be the main reasons for the degradation of the mechanical properties. The distribution of graphene oxide was more homogeneous, when the GO amount was 0.1 vol.% and the formation of graphitic layers were avoided due to lesser amount of GO as well as ultrasonic treatment following the ball milling.


2012 ◽  
Vol 1516 ◽  
pp. 255-260 ◽  
Author(s):  
G. Zhang ◽  
L. Hu ◽  
W. Hu ◽  
G. Gottstein ◽  
S. Bogner ◽  
...  

ABSTRACTMo fiber reinforced NiAl in-situ composites with a nominal composition Ni-43.8Al-9.5Mo (at.%) were produced by specially controlled directional solidification (DS) using a laboratory-scale Bridgman furnace equipped with a liquid metal cooling (LMC) device. In these composites, single crystalline Mo fibers were precipitated out through eutectic reaction and aligned parallel to the growth direction of the ingot. Mechanical properties, i.e. the creep resistance at high temperatures (HT, between 900 °C and 1200 °C) and the fracture toughness at room temperature (RT) of in-situ NiAl-Mo composites, were characterized by tensile creep (along the growth direction) and flexure (four-point bending, vertical to the growth direction) tests, respectively. In the current study, a steady creep rate of 10-6s-1 at 1100 °C under an initial applied tensile stress of 150MPa was measured. The flexure tests sustained a fracture toughness of 14.5 MPa·m1/2at room temperature. Compared to binary NiAl and other NiAl alloys, these properties showed a remarkably improvement in creep resistance at HT and fracture toughness at RT that makes this composite a potential candidate material for structural application at the temperatures above 1000 °C. The mechanisms responsible for the improvement of the mechanical properties in NiAl-Mo in-situ composites were discussed based on the investigation results.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


Sign in / Sign up

Export Citation Format

Share Document