scholarly journals Environmental Geochemical Assessment of Heavy Metals in Soil and Sediment of (Shatt-Al-Hilla) Babil Governorate, Central Iraq

2019 ◽  
Vol 60 (5) ◽  
pp. 1055-1068
Author(s):  
Mansour Hussain Manea ◽  
Balsam Salim. Al-Tawash ◽  
Younus I. Al-Saady

Heavy metals concentration in the soils and sediments has increased worldwide during the last century as a result of the rapid increase in population which combined by an increase in human activity as agriculture,  industrial and many other activities. Ten soil and three river sediment samples were collected from 10 main sampling stations at Shatt Al-Hilla River from Sada area to Dora Bridge in Babylon province. The chemical analysis of the sedimentation sample in the laboratory included pH calculation, electrical conductivity (EC) (Cation Exchange Capacity (CEC), organic matter (OM), and heavy metals as (Mn, Ni, Cr, Zn, Cu, Co, Pb, Cd, As and Fe). Indirect geochemical background (IGB) of heavy metal was calculated by the iterative 2 standard deviations (SD) method. The results of enrichment factor for heavy metals of the soil and sediment show that the all heavy metals in the studied samples were within Ef<2 indicate to depletion to minimal enrichment (i.e. no or minimal pollution). While Cd in the sample (5), Co in the sample (7), Cr in the sample (8) and Mn in the sample (1S) are within 2 ≤ EF < 5 indicate to Moderate enrichment. Contamination factor (Cf) for heavy metals of soil and sediment show that the all heavy metals in the studied samples were within Cf < 1 -Low contamination. While Sample "2" (Cd, Fe), sample "3" (Ni, Cr, Pb, and Cd), sample "4" (Mn, Fe) and sample "8" (Cr) are within 1 ≤ Cf < 3 moderate contamination. Pollution load index result of all the soil and sediment samples are less than one indicate that  "no pollution" are present, except sample 3 where the PLI value higher than 1 indicates the samples have been "polluted ". The modified degree of contamination (mCd) data indicate nil to a low degree of contamination for all of the soil and sediments samples.

Author(s):  
Nabil, A. E. Azzaz ◽  
Mokhtar, S. Beheary ◽  
Mohamed, N. Raslan ◽  
Hazem T. Abd El Hamid

In the present study, water and sediment samples were collected from Navigation Canal and from Industrial Zone South Port Said to assess heavy metals contamination. It was shown that, the highest mean concentration of heavy metals in water samples was observed in summer, and the lowest mean was observed in winter. It has been made evident that the industrialization in Industrial Zone South Port Said was responsible for the present deteriorating conditions. However, it was shown that, the highest mean concentration of heavy metals in sediment samples was observed in winter, and the lowest mean was observed in summer. Pollution status was evaluated using some indices: geo-accumulation index (Igeo), contamination factor (CF), pollution load index (PLI) and ecological risk index (RI). Based on Igeo, all metal values were unpolluted. On the basis of the values of CF, sediments are high in winter and low in summer. Metals concentrations were in the following order: Ni > Fe > Mn > Pb > Cu > Zn > Co > Cd. According to CF classification, Ni contamination was considerable. RI of winter season can be classified as moderate pollution. No pollution was classified for PLI in all seasons. The decrease in PLI and RI values were indicated dilution and dispersion of metal content with increasing distance from source areas. It is suggested that PLI can give an indication about the trend spatially and temporarily. In addition, it also provides significant data and advice to the policy and decision makers on the contamination degree of the area.


2021 ◽  
Author(s):  
Tasrina Rabia Choudhury ◽  
Thamina Acter ◽  
Nizam Uddin ◽  
Masud Kamal ◽  
A.M. Sarwaruddin Chowdhury ◽  
...  

Abstract Oil spillage is one of the common pollution events of global water-soil ecosystems. A comprehensive investigation on heavy metals pollution of surface water and sediments was conducted after oil spill incident in Sela River and its tributaries of the Sundarbans mangrove forest ecosystems, Bangladesh. Water and sediment samples were collected from the preselected sampling points in Sela River, and the elemental (Pb, Cd, Cr, Co, Cu, Ni, Fe, As, Hg, Mn, Zn, Ca, Mg, Na, and K) analysis was done using atomic absorption spectrometer (AAS). This study revealed that the descending order for the average concentration of the studied elements were found to be Mg > Co > Na > Ni > K > Ca > Pb > Fe > Mn > Cr > Cd > Zn > Cu respectively, while As and Hg in water samples were found to be below detection limit (BDL). However, some of the toxic elements in the Sela River water samples were exceeded the permissible limit set by the World Health Organization (WHO) with a descending order of Co > Cd > Pb > Ni respectively. Based on the water quality index (WQI), metal pollution index (MPI), and metal quality index (MI), the Sela River water is not suitable for drinking but may be used for irrigating agricultural and vegetable crops. On the other hand, elemental concentration in the sediment samples were found to be the following descending order of Fe > Mg > Na > K > Ca > Mn > Zn > Cr > Cu > Pb > As > Cd respectively. Several pollution assessment indices: contamination factor (Cf), degree of contamination (Cd), modified degree of contamination (mCd), pollution load (PLI), enrichment factor (EF), geo-accumulation (Igeo) indices were followed to assess the sediment systems pollution in the study area. Considering sediment quality indices, this study revealed that the river sediment had higher contamination factor (Cf) values for Cd, moderate values for Pb, Cr, Cu, Zn, Mg, and As, and low values for Mn, Fe, Ca, Na, and K. Among the studied heavy metals, Cd content was highest in both water and sediment samples, which confirming that Cd, insoluble or suspended form, was more likely to be strongly deposited and bound in sediments from water. Principal component and correlation analyses suggested that the sources of heavy metals pollution were mainly anthropogenic along with the geogenic sources in the study area.


2020 ◽  
Vol 24 (8) ◽  
pp. 1447-1454
Author(s):  
B. Samuel ◽  
S. Solomon ◽  
F. Daniel ◽  
G.M. Zinabu ◽  
G. Riise

Industrial effluents, containing heavy metals, drain directly into downstream water sources within the Hawassa Industrial Zone. These, water  sources are used for irrigation, drinking water and other domestic purposes. The load of pollutants, environmental risks and potential human impacts are generally, unknown for soil in Ethiopia. Therefore, the aim of this study was to determine the extent of heavy metal pollution of soil within the Hawassa Industrial Zone and to evaluate environmental impacts using contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), ecological risk factor (Er), ecological risk index (ERI) and pollution load index (PLI) analyses. Seven heavy metals: Cr, Ni, Cu, Zn, As, Cd and Pb were determined in soil samples from three different sites by inductively coupled plasma mass spectrometry (ICP-MS). Average concentration of metals decreased in the order of Zn>Cu>Cr>Ni>Pb>As>Cd consistent with the normal order of abundance in non-polluted soils. One way ANOVA revealed significant differences (P<0.05) in the concentrations of Cu, As, Cd and Pb among the sampling sites. Pearson’s correlation, principal component and cluster analyses revealed that heavy metals are originating from different sources. Within the industrial area,  the CF increased in the order of Pb<Cd<Zn<As<Cu<Cr<Ni. The result of Cd revealed that there was considerable to very high contamination of the soil. The mCd index showed moderate contamination of the soils. The Er increased in the order of Zn<Cr<Pb<Cu<Ni<As<Cd and the result of the ERI value revealed considerable ecological risk for the soils. Overall, the study showed that the soils within the Hawassa Industrial Zone are highly contaminated with heavy metals. Therefore, regular monitoring of heavy metals concentration in soil and policy interventions with respect to waste disposal are recommended. Keywords: Heavy metals, potential ecological risks, pollution load index, soil


2016 ◽  
Vol 6 (1) ◽  
pp. 804-812 ◽  
Author(s):  
Tuncer Okan GENC ◽  
Fevzi YILMAZ

This paper focuses on metal (Cr, Cu, Pb, Mn and Zn) accumulation and degree of contamination in the sediments of the Koycegiz Lagoon Systems. Pollution by these metals was examined using several calculation methods: pollution load index (PLI), contamination factor (CF), geoaccumulation index (lgeo) and enrichment factors (EF). The mean value of contamination factor (CF) for Pb, Cu, Zn, Mn metals showed low degree of contamination (CF < 1), whereas Cr showed considerably degree (3CF< 6). Higher PLI values were observed in sampling sites III where discharge point of waste water and the PLI values indicated that Cr is the major contributors to the sediment pollution. Average lgeo values of analyzed metals (except Cr) indicating uncontaminated to moderately contaminated status of the sediment whereas the Igeo values for Cr indicates moderately to strongly contaminated status. For most of the sites EF of the studied metals were lower than 1 indicating there is not intense human influence to the metal pollution in sediments.


Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 113
Author(s):  
Daler Abdusamadzoda ◽  
Djamshed A. Abdushukurov ◽  
Octavian G. Duliu ◽  
Inga Zinicovscaia

This study discusses contamination of soils and sediments with trace elements such as Mn, Ba, W, V, Co, Cr, Zn, Ni, As, Sb Hg as well as Th and U, the influence of natural and anthropogenic factors on the distribution of elements and the ecological state of the Zarafshon Valley. The elemental composition of 116 soil and sediment samples were analyzed by the neutron activation analysis. The calculation of the geoaccumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) showed that some places in the investigated region with developed the industrial zones (around mining and processing plants of “Anzob”, “Konchoch”, “Kumargi bolo” and “Mogiyon”) are mostly polluted by As, Sb, Hg, and in rare cases, the high concentration of W and V were determined. In addition, they were considered the distribution of radioactive elements–thorium and uranium and their ratio in the soil and sediments. Moreover, in the investigated area, strong anomalies of Th and U were not found. It turned out that the content of Th and U are local in nature and do not have a noticeable effect on the environment.


2021 ◽  
Author(s):  
Yeasmin Nahar Jolly ◽  
Atahar Rabby ◽  
Mehedi Hasan ◽  
Khan Mohammad Mamun ◽  
Shirin Akter ◽  
...  

Abstract Present study sketched to quantify heavy metals (Cr, Mn, Ni, Cu, Zn, Pb, Cd, As) in sediment samples (Dry and Rainy season) of an industrially affected river namely Shitalakshya by Energy Dispersive X-ray fluorescence (EDXRF) technique. Different geochemical indices and multivariate statistical analysis were applied to define the accumulation, source and level of metal pollution in the sediment samples and probabilistic health risk implications due to dermal contact of sediment was also evaluated. Study revealed mean heavy metal (HM) concentrations in a sequence of Mn > Zn > Cu > Cr > Ni > Pb > As > Cd for both the seasons and almost all the elements were found within the suggestive standard value by various agencies with an exception of Cd and As. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) indicated a high level of contamination by HM and a moderate level of Ecological risk was assessed for both the season. Hazard Index (HI), known as non-carcinogenic health risk for all the elements studied found bellow 1, indicating no harm for health and total carcinogenic risk also revealed the safe range. Results of multivariate statistical analysis indicates, the possible sources are mostly anthropogenic which may be owing to discharge of untreated wastes from various industries, metal and waste dumping sites, oil and refinery industries, glass and ceramic industries as they are located closely to the sampling sites of the Shitalakshya river.


2021 ◽  
Vol 2 (8) ◽  
pp. 696-704
Author(s):  
Hassan Malvandi

Background: Sediments in the aquatic ecosystems can be used as suitable indicators for monitoring contaminants. Then, objectives of this study were to evaluate the concentration of heavy metals in the surface sediments of the Mohammad Abad River, to determine the degree of pollution of heavy metals in sediments using some major contamination indices; to identify the major sources (anthropogenic or natural sources) of the studied metals; and to evaluate the “reference river” of the river under study for ecotoxicology studies. Methods: Samples of sediment were taken from six sites of the river. The present study, eleven heavy metals (chromium, manganese, iron, cobalt, nickel, zinc, selenium, magnesium, silver, aluminum and arsenic) were studied. Results: Comparison of metal concentrations with those of Sediment Quality Guidelines (SQGs) showed no association with harmful biological effects for the heavy metals studied except for Se and As. The results of the contamination factor index showed low pollution levels for most metals (Cr, Mn, Fe, Co, Ni, Zn and Al), moderate pollution levels for As, and very high pollution levels for Se. The degree of contamination (Cd) and modified degree of contamination (mCd), showing the total contamination of elements, demonstrated very high degree contamination status in the study area. According to the index of quantification of contamination, the values of Cr, Mn, Fe, Ni, Zn and Al were derived mainly from geogenic sources of enrichment, while the values for Se and As were enriched by anthropogenic source of enrichment. Conclusion: These findings suggest that continuous monitoring of Se and As in sediment and organisms of the Mohammad Abad River should be directed to evaluate the threat of these elements to the public health and to the ecology of the river under study.


2020 ◽  
Vol 53 (2E) ◽  
pp. 36-61
Author(s):  
Ahmed Al-Obeidi

Soil pollution adversely affects the safety and health of the human being. The main objective of the study is to determine the concentrations of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) in surface soil in Al-Hawija, southwestern Kirkuk. Twenty-one samples were collected and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to measure the content of heavy metals and assess the soil pollution by using the contamination factor, degree of contamination, geoaccumulation index, pollution load index and ecological risk index (RI). The results indicate that there is high pollution by lead, chromium and copper (78.8, 87.4 and 53.8 mg/kg) respectively, in industrial areas due to anthropogenic sources with the presence of significant ecological risk (Er) of the lead (116) in site S7, due to its high concentrations, while size fraction analysis indicated that all heavy metals are concentrated in the fine parts as a result of adsorption processes by clay minerals.


Tehnika ◽  
2020 ◽  
Vol 75 (4) ◽  
pp. 297-304
Author(s):  
Todor Serafimovski ◽  
Goran Tasev ◽  
Trajce Stafilov

The intense mineral extraction in mining areas during the last several decades has produced a large amount of waste material and tailings, which release toxic elements to the environment. The aim of the study was to determine in two vertical profiles/sections (1 and 2) the heavy metal contents of samples derived from six samples, three from each section located in the porphyry copper mine Buchim area, Republic North Macedonia. The results have been compared to new Dutchlist (DL) and Kabata-Pendias (KP) standards and the following was concluded: As values ranged 14.985÷60.131 mg kg-1 with 4 samples above the target value of the DL (29 mg kg-1 As) and 6 above standard values given in KP value (5 mg kg-1 As), in that context Co values ranged 11 ÷57 mg kg-1 with 6 values above the target value of the DL (9 mg kg-1 Co) and 5 above standard values given in KP value (12 mg kg-1 Co), Cr with range 29.32÷75.76 mg kg-1 with 6 over KP value (10 mg kg-1 Cr) and none above the target value of the DL (100 mg kg-1 Cr), Cu with range 2694÷6749 mg kg-1 with 6 samples above the target value of the DL (36 mg kg-1 Cu) and 6 above standard values given in KP value (20 mg kg-1 Cu), Ni with range 59.57÷105.98 mg kg-1 with 6 samples above the target value of the DL (35 mg kg-1 Ni) and 6 above standard values given in KP value (20 mg kg-1 Ni), Pb with range 27.06 ÷96.08 mg kg-1 with 1 sample above the target value of the DL (85 mg kg-1Pb) and 6 above standard values given in KP value (25 mg kg-1Pb), Zn with range 147÷273 mg kg-1 with 6 over target value of the DL (140 mg kg-1 Zn) and 6 above standard KP value (64 mg kg-1 Zn), V with range 34.44÷92.57 mg kg-1 with 5 over target value of the DL (42 mg kg-1 V) and one above KP value (90 mg kg-1 V).In order to compare the level of contamination, the contamination factor (𝐶𝑓 𝑖 ), degree of contamination (Cd), and pollution load index (PLI) were computed. Serious numbers were found for Cu, as, Zn, Co and Ni, which exceeded standard values at almost all samples from both vertical sections. Compared from section 1 and section 2, pollution load index increased by 13.43%, which in almost all samples was classified as heavily polluted to extremely polluted. The fact that mining activities at the Buchim Mine last for almost 40 years, the presence of heavy metals in soils at a serious level is understandable. The high level of contamination is a result of heavy metal persistence and non-biodegradability.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
M. Z. H. Khan ◽  
M. R. Hasan ◽  
M. Khan ◽  
S. Aktar ◽  
K. Fatema

The concentrations of major (Si, Al, Ca, Fe, and K) and minor (Cd, Mn, Ni, Pb, U, Zn, Co, Cr, As, Cu, Rb, Sr, and Zr,) elements in the surficial sediments were studied in an attempt to establish their concentration in the Bengal coast. It was revealed that the majority of the trace elements have been introduced into the Bengal marine from the riverine inflows that are also affected by the impact of industrial, ship breaking yard, gas production plant, and urban wastes. The concentration of heavy metals was measured using Atomic Absorption Spectroscopy and Energy Dispersive X-ray fluorescence instruments. The highest concentrations for several trace elements were thus recorded which generally decrease with distance from the coast. It was observed that the heavy metal concentrations in the sediments generally met the criteria of international marine sediment quality. However, both the contamination factor and pollution load index values suggested the elevation of some metals’ concentrations in the region. Constant monitoring of the Bengal coast water quality needs to be recorded with a view to minimizing the risk of health of the population and the detrimental impacts on the aquatic ecosystem.


Sign in / Sign up

Export Citation Format

Share Document