scholarly journals An Assessment of Metal Contamination Risk in Sediments of the Mohammad Abad River, Northern Iran

2021 ◽  
Vol 2 (8) ◽  
pp. 696-704
Author(s):  
Hassan Malvandi

Background: Sediments in the aquatic ecosystems can be used as suitable indicators for monitoring contaminants. Then, objectives of this study were to evaluate the concentration of heavy metals in the surface sediments of the Mohammad Abad River, to determine the degree of pollution of heavy metals in sediments using some major contamination indices; to identify the major sources (anthropogenic or natural sources) of the studied metals; and to evaluate the “reference river” of the river under study for ecotoxicology studies. Methods: Samples of sediment were taken from six sites of the river. The present study, eleven heavy metals (chromium, manganese, iron, cobalt, nickel, zinc, selenium, magnesium, silver, aluminum and arsenic) were studied. Results: Comparison of metal concentrations with those of Sediment Quality Guidelines (SQGs) showed no association with harmful biological effects for the heavy metals studied except for Se and As. The results of the contamination factor index showed low pollution levels for most metals (Cr, Mn, Fe, Co, Ni, Zn and Al), moderate pollution levels for As, and very high pollution levels for Se. The degree of contamination (Cd) and modified degree of contamination (mCd), showing the total contamination of elements, demonstrated very high degree contamination status in the study area. According to the index of quantification of contamination, the values of Cr, Mn, Fe, Ni, Zn and Al were derived mainly from geogenic sources of enrichment, while the values for Se and As were enriched by anthropogenic source of enrichment. Conclusion: These findings suggest that continuous monitoring of Se and As in sediment and organisms of the Mohammad Abad River should be directed to evaluate the threat of these elements to the public health and to the ecology of the river under study.

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Deshu Mamo Mekuria ◽  
Alemnew Berhanu Kassegne ◽  
Seyoum Leta Asfaw

Abstract Addis Ababa City’s river ecosystem is under extreme pressure as a result of inappropriate practices of dumping domestic and industrial wastes; thus, threatening its ability to maintain basic ecological, social and economic functions. Little Akaki River which drains through Addis Ababa City receives inorganic and organic pollutants from various anthropogenic sources. Most of inorganic pollutants such as toxic heavy metals released into the river are eventually adsorbed and settle in the sediment. The objective of this study was to evaluate the enrichment levels, pollution load and ecological risks of selected heavy metals (Zn, Cr, Cd and Pb) using various indices. The mean concentrations of heavy metals in Little Akaki River sediment were: Zn (78.96 ± 0.021–235.2 ± 0.001 mg/kg); Cr (2.19 ± 0.014–440.8 ± 0.003 mg/kg); Cd (2.09 ± 0.001–4.16 ± 0.0001 mg/kg) and Pb (30.92 ± 0.018–596.4 ± 0.066 mg/kg). Enrichment factor values indicated that sediments were moderate to significantly enriched with Zn and Cr; moderate to very highly enriched with Pb, and very highly enriched in all sampled sites with Cd. Geo-accumulation index and contamination factor values indicated that the sediments were moderate to very highly contaminated with toxic Cd and Pb. The decreasing order of pollution load index (PLI) in downstream was: (S9) > (S4) > (S8) > (S3) > (S6) > (S10) > (S5) > (S2) > (S7) > (S1). PLI and hierarchical cluster analysis revealed that the highest pollution load occurred in the lower course of the river (S9) which may be due to metals inputs from anthropogenic sources. The ecological risk (RI = 350.62) suggested that the contaminated Little Akaki River sediment can pose considerable ecological risks of pollution. The concentrations of Zn, Cr, Cd and Pb in Little Akaki River sediment surpassed eco-toxicological guideline limits of USEPA (threshold effect concentration) and CCME (Interim Sediment Quality Guidelines). Thus, the contaminated sediments can pose adverse biological effects on sediment dwelling organisms.


Author(s):  
Marjan Esmaeilzadeh ◽  
Elham Mahmoudpuor ◽  
Somayeh Haghighat Ziabari ◽  
Sara Esmaeilzadeh ◽  
Hamideh Aliani ◽  
...  

Abstract In this paper, concentrations of some heavy metals in surficial sediments of the International Anzali Wetland were measured, this wetland is located in northern part of Iran. Sediment pollution levels were examined and analyzed using reliable pollution indices including Pollution Load Index (PLI), Geoaccumulation Index (Igeo) and Enrichment Factor (CF), and finally it was revealed that heavy metal pollution ranged from low to moderated loads in the wetland. According to Sediment Quality Guidelines (SQGs) and Ecological Risk Index (ERI), it was concluded that As and Ni may have significant toxic impacts on aquatic organisms and also according to Effect Range Median (ERM), the toxicity probability of sediments in the Anzali wetland was estimated at 21%.


2020 ◽  
Author(s):  
Deshu Mamo Mekuria ◽  
Alemnew Berhanu Berhanu Kassegne ◽  
Seyoum Leta Leta Asfaw

Abstract Background: Addis Ababa City’s river ecosystem is under extreme pressure as a result of inappropriate practices of dumping domestic and industrial wastes; thus, threatening its ability to maintain basic ecological, social and economic functions. Little Akaki River which drains through Addis Ababa City receives inorganic and organic pollutants from various anthropogenic sources. Most of inorganic pollutants such as toxic heavy metals released into the river are eventually adsorbed and settle in the sediment. The objective of this study was to evaluate the enrichment levels, pollution load and ecological risks of selected heavy metals (Zn, Cr, Cd and Pb) using various indices.Results: The mean concentrations of heavy metals in Little Akaki River sediment were: Zn (78.96 ± 0.021 - 235.2 ± 0.001mg/kg); Cr (2.19 ± 0.014 - 440.8 ± 0.003 mg/kg); Cd (2.09 ± 0.001-4.16 ± 0.0001mg/kg) and Pb (30.92 ± 0.018 -596.4 ± 0.066 mg/kg). Enrichment factor values indicated that sediments were moderate to significantly enriched with Zn and Cr; moderate to very highly enriched with Pb, and very highly enriched in all sampled sites with Cd. Geo-accumulation index and contamination factor values indicated that the sediments were moderate to very highly contaminated with toxic Cd and Pb. The decreasing order of pollution load index (PLI) in downstream was: (S9) > (S4) > (S8) > (S3)> (S6) > (S10) > (S5) > (S2)> (S7) > (S1). PLI and hierarchical cluster analysis revealed that the highest pollution load occurred in the lower course of the river (S9) which may be due to metals inputs from anthropogenic sources. The ecological risk (RI =350.62) suggested that the contaminated Little Akaki River sediment can pose considerable ecological risks of pollution.Conclusions: The concentrations of Zn, Cr, Cd and Pb in Little Akaki River sediment surpassed eco-toxicological guideline limits of USEPA (threshold effect concentration) and CCME (Interim Sediment Quality Guidelines). Thus, the contaminated sediments can pose adverse biological effects on sediment dwelling organisms.


Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 30 ◽  
Author(s):  
Mohammed Abdus Salam ◽  
Shujit Chandra Paul ◽  
Farrah Izzaty Shaari ◽  
Aweng Eh Rak ◽  
Rozita Binti Ahmad ◽  
...  

Heavy metal pollution is one of the major environmental issues in recent decades owing to the rapid increase in urbanisation and industrialisation. Sediments usually act as sinks for heavy metals due to their complex physical and chemical adsorption mechanisms. In this study, heavy metals like lead (Pb), Zinc (Zn), Cadmium (Cd), Copper (Cu) and Iron (Fe) in the surface sediment from 15 location (upstream and downstream) on the Perak River, Malaysia were investigated by means of inductively coupled plasma optical emission spectroscopy (ICP-OES). The geostatistical prediction map showed the range of Pb, Zn, Cd, Cu and Fe concentration in upstream area was 14.56–27.0 µg/g, 20–51.27 µg/g, 1.51–3.0 µg/g, 6.6–19.12 µg/g and 20.24–56.58%, respectively, and in downstream areas was 27.6–60.76 µg/g, 49.04–160.5 µg/g, 2.77–4.02 µg/g, 9.82–59.99 µg/g and 31.34–39.5%, respectively. Based on the enrichment factor and geoaccumulation index, Cd was found to be the most dominant pollutant in the study area. Pollution load index, sediment quality guidelines and sediment environmental toxicity quotient data showed that the downstream sediment was more polluted than the upstream sediment in the Perak River. The multivariate analysis showed that Pb, Zn and Cu mainly originated from natural sources with minor contribution from human activities, whereas Fe and Cd originated from various industrial and agricultural activities along the studied area.


2020 ◽  
Author(s):  
K. Y. Lim ◽  
N. A. Zakaria ◽  
K. Y. Foo

Abstract The present work is aimed at assessing the aftermath effects of the 2014 flood tragedy on the distribution, pollution status and ecological risks of the heavy metals deposited in the surface river sediment. A series of environmental pollution indexes, specifically the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), pollution load index (PLI), potential ecological risk index (PERI) and sediment quality guidelines (SQGs) have been adopted. Results revealed that the freshly deposited sediments collected soon after the flood event were dominated by Cu, Fe, Pb, Ni, Zn, Cr and Cd, with the average concentrations of 38.74, 16,892, 17.71, 4.65, 29.22, 42.36 and 0.29 mg/kg, respectively. According to the heavy metal pollution indexes, Pahang River sediments were moderately to severely contaminated with Pb, Ni, Cu, Zn and Cr, while Cd with the highest risk of 91.09 was the predominant element that illustrated an aesthetic ecological risk to the water body after the tragic flood event. The findings highlighted a critical deterioration of the heavy metals content, driven by the catastrophic flood event, which has drastically altered their geochemical cycles, sedimentary pollution status and biochemical balance of the river's environment.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
M. Z. H. Khan ◽  
M. R. Hasan ◽  
M. Khan ◽  
S. Aktar ◽  
K. Fatema

The concentrations of major (Si, Al, Ca, Fe, and K) and minor (Cd, Mn, Ni, Pb, U, Zn, Co, Cr, As, Cu, Rb, Sr, and Zr,) elements in the surficial sediments were studied in an attempt to establish their concentration in the Bengal coast. It was revealed that the majority of the trace elements have been introduced into the Bengal marine from the riverine inflows that are also affected by the impact of industrial, ship breaking yard, gas production plant, and urban wastes. The concentration of heavy metals was measured using Atomic Absorption Spectroscopy and Energy Dispersive X-ray fluorescence instruments. The highest concentrations for several trace elements were thus recorded which generally decrease with distance from the coast. It was observed that the heavy metal concentrations in the sediments generally met the criteria of international marine sediment quality. However, both the contamination factor and pollution load index values suggested the elevation of some metals’ concentrations in the region. Constant monitoring of the Bengal coast water quality needs to be recorded with a view to minimizing the risk of health of the population and the detrimental impacts on the aquatic ecosystem.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kholoud Abou Seedo ◽  
Mohammad S. Abido ◽  
Ahmed A. Salih ◽  
Asma Abahussain

Accumulation of 8 heavy metals (HM), Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn, was assessed in the leaves and sediments of gray mangrove (Avicennia marina (Forsk.) Vierh.) at three sites along Tubli Bay using Inductive Coupled Plasma Analyzer. The results showed no significant differences in HM contents in the leaves of mangroves between the sites except for Mo and Zn. HM concentrations (mg L−1) in leaves were in the following order: Fe > Zn > Mn > Mo > Cu > Ni > Cr. Significant differences existed between sediment content of Tubli site and the other two sites with regard to Cr, Cu, Pb, and Zn due to direct exposure of the site to wastewater outfalls. A general trend of decline in HM concentrations was noticeable from the top towards deeper sediment layers in all the sites of the study area. Concentration of HM in sediment was in the following order: Fe > Mn > Zn > Cu > Cr > Pb > Ni. HM concentration in sediments far exceeded the amount present in the leaves of the mangrove except for Ni. The amounts of HM in mangrove sediments were comparable to regional findings and fell within known sediment quality guidelines.


2021 ◽  
Vol 52 (4) ◽  
pp. 868-875
Author(s):  
Aweez & et al.

The aim of this study was to application of some single and integrated index equation to assess heavy metal in different soil within Erbil governorate. The 15 different locations (Bahare new, Newroz, New Hawler, Hesarok, Azadi1, Zen city, Atconz city, Pank village, Binaslawa, Darato, Qushtapa, Shaways, Kasnazan, Bahirka, Pirzin) were specifically selected to identify the effects of traffic activities on soil properties. Different heavy metal distribution patterns (As, Cd, Cu, Cr and Zn) were determined from distance 5, 25, 50m roadside. Soil pollution was assessed using many indices including: contamination factor (CF), degree of contamination (Cdeg), Ecological Risk Factor and Potential Ecological Risk Index.The results showed that concentrations of As, Cd, Cr, Cu, and Zn in street dust ranged from (4.60, 1.80, 217.83, 62.14 and 215.18) mg.kg-1 which recorded in Qushtapa, Kasnazan, Atconze city, Hasarok5 and Zen city respectively. The contamination factor  and degree of contamination of  the trace elements As, Cd, Cr, Cu ,and Zn of soil samples was indicating considerable contamination factor for Qushtapa moderate contamination factor for Kasnazan, while Atconze city, Hasarok5, Zen city showed very high contamination factor, while degree of contamination considerable low degree of contamination. According to the ecological risk factor and RI results Qwshtapa was indicate as low potential ecological risk, Kasnazan had moderate potential ecological risk while Hasarok5 and Zen city considerable high potential ecological risk, except Atconze considerable very high ecological risk, on the other hand for RI index shown considerable very high ecological risk recorded in Hasarok 5 soil samples.


Author(s):  
K. Swarnalatha ◽  
J. Letha ◽  
S. Ayoob

Risk analysis of urban aquatic systems due to heavy metals turns significant due to their peculiar properties viz. persistence, non-degradability, toxicity, and accumulation. Akkulam Veli (AV), an urban tropical lake in south India is subjected to various environmental stresses due to multiple waste discharge, sand mining, developmental activities, tourism related activities etc. Hence, a comprehensive approach is adopted for risk assessment using modified degree of contamination factor, toxicity units based on numerical sediment quality guidelines (SQGs), and potentialecological risk indices. The study revealed the presence of toxic metals such as Cr,Cd, Pb and As and the lake is rated under ‘low ecological risk’ category.


Sign in / Sign up

Export Citation Format

Share Document