scholarly journals Distribution of Heavy Metals in Surface Sediments of the Bay of Bengal Coast

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
M. Z. H. Khan ◽  
M. R. Hasan ◽  
M. Khan ◽  
S. Aktar ◽  
K. Fatema

The concentrations of major (Si, Al, Ca, Fe, and K) and minor (Cd, Mn, Ni, Pb, U, Zn, Co, Cr, As, Cu, Rb, Sr, and Zr,) elements in the surficial sediments were studied in an attempt to establish their concentration in the Bengal coast. It was revealed that the majority of the trace elements have been introduced into the Bengal marine from the riverine inflows that are also affected by the impact of industrial, ship breaking yard, gas production plant, and urban wastes. The concentration of heavy metals was measured using Atomic Absorption Spectroscopy and Energy Dispersive X-ray fluorescence instruments. The highest concentrations for several trace elements were thus recorded which generally decrease with distance from the coast. It was observed that the heavy metal concentrations in the sediments generally met the criteria of international marine sediment quality. However, both the contamination factor and pollution load index values suggested the elevation of some metals’ concentrations in the region. Constant monitoring of the Bengal coast water quality needs to be recorded with a view to minimizing the risk of health of the population and the detrimental impacts on the aquatic ecosystem.

2021 ◽  
Vol 6 (2) ◽  
pp. 58-66
Author(s):  
A. N. Ogbaran ◽  
◽  
I. E. Joseph-Akwara ◽  

This research was carried out to evaluate the impact of dumpsite and farming methods (anthropogenic Activities) on wetland soil qualities. Soil samples were collected from three strategic locations in Irri and Uzere communities at Delta State of Nigeria, and a reference station (control) about 5 km away from the study site. The sampling was done at the end of the rainy season (September, 2020), when the flood water had started rescinding, at two soil depths (5 to 10 cm and 45 to 50 cm). The concentration of iron, nickel, copper and cadmium concentration of the soil samples were determined with the Atomic Absorption Spectrophotometer (AAS), according to procedures approved by ASTM International. Results obtained from the chemical analysis revealed irregular concentration and distribution of the heavy metals within the studied area. Regardless of the sampling depth, the highest heavy metal concentrations were observed around the active dumpsite. Ranking order of the heavy metals’ concentrations in all the sampling locations was Fe ˃ Cu ˃ Ni ˃ Cd. It was observed from the results that the profile concentrations of the heavy metals increased with an increase in the soil depth. Using the contamination factor to assess the heavy metals contamination of the wetland, the results showed that the area ranged from moderate to considerable level of contamination, while pollution load index reveled that wetland soils were moderately polluted with the heavy metals. In terms of the soil pollution, the overall results revealed that area closed to the wastes dumpsite (site 1) was heavy polluted with the heavy metals


DEPIK ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 403-410
Author(s):  
Edward Edward

Contamination and pollution of heavy metals in the bottom sediment can pose serious issues to marine organisms and human health. Jakarta Bay which is located adjacent to the capital city of Indonesia is notorious for its pollution problems. The purpose of this research was to assest the contamination levels of heavy metals Hg, Pb, and Cd in sea-bottom sediments based on an index analysis approach (contamination factors, geo accumulation index, pollution load index). Sediment samples were collected from 31 stations in Jakarta Bay. Heavy metal concentration was measured using Atomic Absorption Spectrophotometer (AAS). The results showed that an average mercury (Hg) concentration ranged from 0.150 to 0.530 µg.g-1 with an total average of 0.362 µg.g-1, Lead (Pb) from 14.870 to 35.650 µg.g-1 with an total average of 21.774 µg.g-1, Cadmium (Cd) 0.110-0.280 µg.g-1 with an total average of 0.190 µg.g-1.The average concentration of Hg, Pb, and Cd is still lower than the sediment quality threshold values set by the Office of the State Minister of Environment of Indonesia  2010. The results of the index analysis showed that the average value of contamination factor (CF) are Hg 0.685, Pb 0.558, and Cd 0.380 respectively (low contamination) and geo accumulation index values are Hg 0.237, Pb -1.655, and Cd 0.069 respectively (unpolluted to moderate polluted). Overall, based on the pollution load index value is -0,511 (PLI 1), sediments in these waters are categorized as not yet polluted by Hg, Pb and Cd. This situation  is so necessary to be maintained, that in order for the preservation of marine resources will remain.Keywords: Jakarta Bay, sediment, pollution, heavy metals, assessmentABSTRAKKontaminasi dan pencemaran logam berat pada sedimen dasar dapat menimbulkan masalah yang serius bagi biota laut dan kesehatan manusia. Teluk Jakarta yang terletak berdekatan dengan ibu kota Indonesia terkenal karena masalah pencemarannya yang parah. Tujuan penelitian ini adalah untuk menilai tingkat kontaminasi logam berat Hg, Pb dan Cd dalam sedimen dasar laut berdasarkan pendekatan analisis indeks. Contoh sedimen diambil dari 31 stasiun penelitian di Teluk Jakarta. Kadar logam berat diukur dengan alat Spektrofometer Penyerapan Atom. Hasil penelitian menunjukkan kadar Hg rerata berkisar 0,150-0,530 µg. g-1 dengan rerata total 0,362 µg. g-1, Timbal (Pb) 14,870-35,650 µg. g-1 dengan rerata total 21,774 µg. g-1, Kadmium (Cd) 0,110-0,280 µg. g-1 dengan rerata total 0,190 µg.g-1. Kadar rerata Hg, Pb dan Cd masih lebih rendah dari nilai ambang batas kualitas sedimen yang ditetapkan oleh Kantor Menteri Negara Lingkungan Hidup Indonesia 2010. Hasil analisis indeks menunjukkan nilai rerata faktor kontaminasi (CF) berturut-turut adalah Hg 0,685, Pb 0,352 dan Cd 0,380 (kontaminasi rendah) dan nilai indeks geo akumulasi berturut-turut adalah Hg 0,227, Pb 1,098 dan Cd 0,633 (tidak tercemar sampai tercemar sedang). Secara keseluruhan, berdasarkan nilai indeks beban pencemaran yakni -3.772 (PLI 1), sedimen di perairan ini termasuk kategori belum tercemar oleh Hg, Pb dan Cd. Keadaan ini perlu dipertahankan, agar kelestarian sumberdaya laut tetap terjaga.Kata kunci: Teluk Jakarta, sedimen, pencemaran, logam berat, penilaian


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Deshu Mamo Mekuria ◽  
Alemnew Berhanu Kassegne ◽  
Seyoum Leta Asfaw

Abstract Addis Ababa City’s river ecosystem is under extreme pressure as a result of inappropriate practices of dumping domestic and industrial wastes; thus, threatening its ability to maintain basic ecological, social and economic functions. Little Akaki River which drains through Addis Ababa City receives inorganic and organic pollutants from various anthropogenic sources. Most of inorganic pollutants such as toxic heavy metals released into the river are eventually adsorbed and settle in the sediment. The objective of this study was to evaluate the enrichment levels, pollution load and ecological risks of selected heavy metals (Zn, Cr, Cd and Pb) using various indices. The mean concentrations of heavy metals in Little Akaki River sediment were: Zn (78.96 ± 0.021–235.2 ± 0.001 mg/kg); Cr (2.19 ± 0.014–440.8 ± 0.003 mg/kg); Cd (2.09 ± 0.001–4.16 ± 0.0001 mg/kg) and Pb (30.92 ± 0.018–596.4 ± 0.066 mg/kg). Enrichment factor values indicated that sediments were moderate to significantly enriched with Zn and Cr; moderate to very highly enriched with Pb, and very highly enriched in all sampled sites with Cd. Geo-accumulation index and contamination factor values indicated that the sediments were moderate to very highly contaminated with toxic Cd and Pb. The decreasing order of pollution load index (PLI) in downstream was: (S9) > (S4) > (S8) > (S3) > (S6) > (S10) > (S5) > (S2) > (S7) > (S1). PLI and hierarchical cluster analysis revealed that the highest pollution load occurred in the lower course of the river (S9) which may be due to metals inputs from anthropogenic sources. The ecological risk (RI = 350.62) suggested that the contaminated Little Akaki River sediment can pose considerable ecological risks of pollution. The concentrations of Zn, Cr, Cd and Pb in Little Akaki River sediment surpassed eco-toxicological guideline limits of USEPA (threshold effect concentration) and CCME (Interim Sediment Quality Guidelines). Thus, the contaminated sediments can pose adverse biological effects on sediment dwelling organisms.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 51
Author(s):  
Bouchra Oujidi ◽  
Mohammed El Bouch ◽  
Mounia Tahri ◽  
Mostafa Layachi ◽  
Soilam Boutoumit ◽  
...  

Marchica Lagoon, a Ramsar site on the Mediterranean coast of Morocco, is experiencing the impacts of watershed pollution, which includes pollutants from the domestic, agricultural, industrial, and mining sectors. Restoration actions were undertaken around this lagoon during the last decade in order to protect its ecological value and to develop tourist activity. To conserve the biodiversity in the lagoon, it is important to assess the environmental state of this ecosystem. This study aims to evaluate the ecotoxicological state of sediments through the post restoration characterization of the trace elements Pb, Cu, Zn, Cr, Co, and Ba, as well as their correlation to the major elements, grain size, and total organic carbon, sampled during two campaigns (the wet and dry seasons of 2018) across a sampling network of thirteen stations. Multivariate analysis and ecotoxicological risk assessment of the trace elements using the sediment quality guidelines and five pollution indices (geoaccumulation index (Igeo), enrichment factor (EF), contamination factor (CF), pollution-load index (PLI), and mean effect range median quotient (m-ERM-Q)) revealed contamination of the lagoon by Pb, Zn, and Cu, and minimal pollution by Cr, Co, and Ba. The distribution of the biological-risk index reveals that four zones of the lagoon may present a high probability of toxicity, thus constituting potential risk areas for aquatic organisms: during the wet season, the area in the northwestern sandbar border, the southwest eutrophication zone, and the mouth of the stream valley conveying industrial discharges; and during dry season, the northwestern eutrophication zone. Despite the restoration actions achieved around the lagoon, the lead, zinc, and copper concentrations increased, and their variation was significant between group stations. The biodiversity conservation of Marchica Lagoon requires continuous monitoring and assessment, as well as the implementation of an integrated management plan with restoration actions, not only around the lagoon, but also at its watershed level.


2016 ◽  
Vol 8 (1) ◽  
pp. 174-194 ◽  
Author(s):  
Irina Catianis ◽  
Constantin Ungureanu ◽  
Luca Magagnini ◽  
Elisa Ulazzi ◽  
Tiziana Campisi ◽  
...  

AbstractThe aim of the study was to evaluate the impact of potential pollution sources, mainly from the upstream anthropogenic sources and port-related activities. The in-vestigated area covered a wide range of anthropogenic im-pacts (e.g., industrial wastes, storm water runoff, acciden-tal oil spills, intentional discharges and shipping activities). The quality of water and Sediments was assessed us-ing Standard methods, as physical-chemical parameters, chemistry and biology (microbiology, ecotoxicology) aim-ing to figure the level of pollution and the effect of port-related activities. Seawater quality results agreed generally with environmental Standards. Though, in some samples the concentrations of sulphates (mg/1) and heavy metals (μg/1), as B, As and Se exceeded the recommended lim-its, without posing a serious environmental concern. Most of the surface sediment samples contain critical levels of hydrocarbons (C>12), (mg/kg), polycyclic aromatic hydrocarbons (ng/g) and polychlorobiphenyls (ng/g). For some heavy metals (mg/kg), exchangeable concentrations were found to be very close or above the regulations. The signifi-cance of this study is incontestable taking into account the lack of previous relevant historical data of this area. In this sense, it was possible to indicate, in general, good environmental conditions, despite the industrial and concentrated local port-related activities in the investigated area.


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Fasmi Ahmad

<p>Bangka Island is rich in natural resources particularly tin minerals. The increasing of tin mining has elevated various wastes such as tailings, oil, and fuel coming from the sand scraper tin boat. These wastes containing toxic heavy metals may harmful to marine organism. Measurement of Pb, Cd, Cu, Zn, and Ni were carried out in September 2010. The purpose of this research was to predict the pollution degree of Pb, Cd, Cu, Zn, and Ni in sediment using two different methods namely geoaccumulation index (I_geo) and pollution load index (PLI). The samples of sediments were collected at 20 stations using Gravity Core. The content of heavy metals in all samples was determined using Atomic Absorption Spectrophotometer with a mixture of air and acetylene flame. The results showed that there was a different of prediction on sediment pollution level between Load Pollution Index with Geoaccumulation Index. According to Load Pollution Index, sediments in this waters were not polluted by Pb, Cd, Cu, Zn, and Ni (PLI&lt;1). Based on Geoaccumulation Index, sediment were also not polluted by Pb, Cu, Zn, and Ni (Igeo&lt;0). While for Cd, sediments divided into three categories, namely not polluted (Igeo&lt;0), light polluted (0&lt;Igeo&lt;1), and medium pollued (1&lt;Igeo&lt;2).  The concentration of the heavy metals still lower than that sediment quality guideline values.</p> <p>Keywords: Bangka Island, heavy metals, geoaccumulation index, pollution load index.</p>


2021 ◽  
Vol 2 (8) ◽  
pp. 696-704
Author(s):  
Hassan Malvandi

Background: Sediments in the aquatic ecosystems can be used as suitable indicators for monitoring contaminants. Then, objectives of this study were to evaluate the concentration of heavy metals in the surface sediments of the Mohammad Abad River, to determine the degree of pollution of heavy metals in sediments using some major contamination indices; to identify the major sources (anthropogenic or natural sources) of the studied metals; and to evaluate the “reference river” of the river under study for ecotoxicology studies. Methods: Samples of sediment were taken from six sites of the river. The present study, eleven heavy metals (chromium, manganese, iron, cobalt, nickel, zinc, selenium, magnesium, silver, aluminum and arsenic) were studied. Results: Comparison of metal concentrations with those of Sediment Quality Guidelines (SQGs) showed no association with harmful biological effects for the heavy metals studied except for Se and As. The results of the contamination factor index showed low pollution levels for most metals (Cr, Mn, Fe, Co, Ni, Zn and Al), moderate pollution levels for As, and very high pollution levels for Se. The degree of contamination (Cd) and modified degree of contamination (mCd), showing the total contamination of elements, demonstrated very high degree contamination status in the study area. According to the index of quantification of contamination, the values of Cr, Mn, Fe, Ni, Zn and Al were derived mainly from geogenic sources of enrichment, while the values for Se and As were enriched by anthropogenic source of enrichment. Conclusion: These findings suggest that continuous monitoring of Se and As in sediment and organisms of the Mohammad Abad River should be directed to evaluate the threat of these elements to the public health and to the ecology of the river under study.


2020 ◽  
Vol 53 (2E) ◽  
pp. 36-61
Author(s):  
Ahmed Al-Obeidi

Soil pollution adversely affects the safety and health of the human being. The main objective of the study is to determine the concentrations of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) in surface soil in Al-Hawija, southwestern Kirkuk. Twenty-one samples were collected and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to measure the content of heavy metals and assess the soil pollution by using the contamination factor, degree of contamination, geoaccumulation index, pollution load index and ecological risk index (RI). The results indicate that there is high pollution by lead, chromium and copper (78.8, 87.4 and 53.8 mg/kg) respectively, in industrial areas due to anthropogenic sources with the presence of significant ecological risk (Er) of the lead (116) in site S7, due to its high concentrations, while size fraction analysis indicated that all heavy metals are concentrated in the fine parts as a result of adsorption processes by clay minerals.


Tehnika ◽  
2020 ◽  
Vol 75 (4) ◽  
pp. 297-304
Author(s):  
Todor Serafimovski ◽  
Goran Tasev ◽  
Trajce Stafilov

The intense mineral extraction in mining areas during the last several decades has produced a large amount of waste material and tailings, which release toxic elements to the environment. The aim of the study was to determine in two vertical profiles/sections (1 and 2) the heavy metal contents of samples derived from six samples, three from each section located in the porphyry copper mine Buchim area, Republic North Macedonia. The results have been compared to new Dutchlist (DL) and Kabata-Pendias (KP) standards and the following was concluded: As values ranged 14.985÷60.131 mg kg-1 with 4 samples above the target value of the DL (29 mg kg-1 As) and 6 above standard values given in KP value (5 mg kg-1 As), in that context Co values ranged 11 ÷57 mg kg-1 with 6 values above the target value of the DL (9 mg kg-1 Co) and 5 above standard values given in KP value (12 mg kg-1 Co), Cr with range 29.32÷75.76 mg kg-1 with 6 over KP value (10 mg kg-1 Cr) and none above the target value of the DL (100 mg kg-1 Cr), Cu with range 2694÷6749 mg kg-1 with 6 samples above the target value of the DL (36 mg kg-1 Cu) and 6 above standard values given in KP value (20 mg kg-1 Cu), Ni with range 59.57÷105.98 mg kg-1 with 6 samples above the target value of the DL (35 mg kg-1 Ni) and 6 above standard values given in KP value (20 mg kg-1 Ni), Pb with range 27.06 ÷96.08 mg kg-1 with 1 sample above the target value of the DL (85 mg kg-1Pb) and 6 above standard values given in KP value (25 mg kg-1Pb), Zn with range 147÷273 mg kg-1 with 6 over target value of the DL (140 mg kg-1 Zn) and 6 above standard KP value (64 mg kg-1 Zn), V with range 34.44÷92.57 mg kg-1 with 5 over target value of the DL (42 mg kg-1 V) and one above KP value (90 mg kg-1 V).In order to compare the level of contamination, the contamination factor (𝐶𝑓 𝑖 ), degree of contamination (Cd), and pollution load index (PLI) were computed. Serious numbers were found for Cu, as, Zn, Co and Ni, which exceeded standard values at almost all samples from both vertical sections. Compared from section 1 and section 2, pollution load index increased by 13.43%, which in almost all samples was classified as heavily polluted to extremely polluted. The fact that mining activities at the Buchim Mine last for almost 40 years, the presence of heavy metals in soils at a serious level is understandable. The high level of contamination is a result of heavy metal persistence and non-biodegradability.


Author(s):  
Nabil, A. E. Azzaz ◽  
Mokhtar, S. Beheary ◽  
Mohamed, N. Raslan ◽  
Hazem T. Abd El Hamid

In the present study, water and sediment samples were collected from Navigation Canal and from Industrial Zone South Port Said to assess heavy metals contamination. It was shown that, the highest mean concentration of heavy metals in water samples was observed in summer, and the lowest mean was observed in winter. It has been made evident that the industrialization in Industrial Zone South Port Said was responsible for the present deteriorating conditions. However, it was shown that, the highest mean concentration of heavy metals in sediment samples was observed in winter, and the lowest mean was observed in summer. Pollution status was evaluated using some indices: geo-accumulation index (Igeo), contamination factor (CF), pollution load index (PLI) and ecological risk index (RI). Based on Igeo, all metal values were unpolluted. On the basis of the values of CF, sediments are high in winter and low in summer. Metals concentrations were in the following order: Ni > Fe > Mn > Pb > Cu > Zn > Co > Cd. According to CF classification, Ni contamination was considerable. RI of winter season can be classified as moderate pollution. No pollution was classified for PLI in all seasons. The decrease in PLI and RI values were indicated dilution and dispersion of metal content with increasing distance from source areas. It is suggested that PLI can give an indication about the trend spatially and temporarily. In addition, it also provides significant data and advice to the policy and decision makers on the contamination degree of the area.


Sign in / Sign up

Export Citation Format

Share Document