scholarly journals Synthesis and Investigation of the Structure and Optical Properties of Nano -Ni-Cr Films

2020 ◽  
pp. 2251-2256
Author(s):  
Jinan H. Awadh

The thermal evaporation technique was used to prepare the Ni-Cr films with a thickness of 200 nm and a rate of deposition  of 0.22nm/Sec. The annealing was performed at 373 and 473 K. The structural and optical analyses of the grown layers were achieved and XRD patterns showed amorphous structure transferred to polycrystalline for film annealed at 373 and 473 K. AFM analysis showed that the surface of Ni-Cr films is homogenous and the average roughness, optical energy gap and absorption coefficient were increased with increasing annealing temperature (Ta).

2020 ◽  
Vol 21 (1) ◽  
pp. 8
Author(s):  
Emy Mulyani ◽  
Tjipto Sujitno ◽  
Dessy Purbandari ◽  
Ferdiansjah Ferdiansjah ◽  
Sayono Sayono

This paper presents the research on the growth of ZnS:Ag:Cu thin film on a glass substrate as a radio-luminescent material. The SRIM/TRIM software is used to determine the optimum thickness based on an energy deposition depth of 5.485 MeV Am 241 alpha radiation source on ZnS:Ag:Cu material. To increase the adhesive strength of the coating, initially, the glass substrate is etched using a plasma glow discharged at 280°C for 15 minutes. Multiple coatings of ZnS:Ag:Cu were  etched on the glass substrate; this was carried out using a thermal evaporation technique to achieve the optimal thickness (based on SRIM/TRIM simulation). The thin film thickness was observed using a scanning electron microscope (SEM). The optical properties of the un-etched, etched glass substrate and thin-film were characterized using UV-Vis spectrometer. Based on SRIM/TRIM simulation, the optimal thickness is 22 mm which can be achieved by coating three times. From optical properties of ZnS:Ag:Cu thin film and after being analysed using Taue plot method, it is found that the energy gap of ZnS:Ag:Cu thin film is 2.48 eV. It can be concluded that the addition of Ag and Cu doped decrease the energy gap of ZnS (3.66 eV).


2013 ◽  
Vol 652-654 ◽  
pp. 371-374
Author(s):  
Jing Lv

Al films (about 40 nm) were prepared on quartz substrates by thermal evaporation technique, and subsequently annealed in air for 1h at temperature ranging from 600 to 1300oC. The characteristics of the annealed films were investigated in this paper. The measurement results of XRD and Raman show that crystalline phase transformations of the annealed films will convert from γ, γ and α, up to α-Al2O3 with the increasing of the annealing temperature at 600 oC, 1200 oC, to 1300oC. AFM and transmission spectra reveal the effects of phase transformations on their morphology and optical properties.


2018 ◽  
Vol 12 (3) ◽  
pp. 209-217 ◽  
Author(s):  
Alaa Abd-Elnaiem ◽  
Samar Moustafa

Chalcogenide glasses have received lots of attention because of their superior optical properties. To optimize these properties and expand areas of applications, more studies are required to establish the extent to which the parameters can be tuned over a wide range of annealing temperatures and heating rates. To do this, bulk and thin ?150 nm As30Te67Ga3 films were prepared by melt-quenching and thermal evaporation techniques, respectively. The phase transition was investigated using differential scanning calorimeter (DSC) while the crystal structures were studied by X-ray diffraction (XRD). Characteristic temperatures such as the glass transition, crystallization and melting temperature of the bulk glass were found to depend on the heating rate. The activation energy of glass transition was 167.29 kJ/mol while the energy of crystallization was 103.98 kJ/mol. XRD results indicated that the annealed films showed more crystallinity, larger average crystallite size, lower dislocation density and lower strain as annealing temperature increased. According to the Avrami exponent, a combination of two and three-dimensional crystal growth with heterogeneous nucleation are possible mechanisms for the crystallization process. Moreover, optical constants such as the optical band gap, refractive index, extinction coefficient, high-frequency dielectric constants, real and imaginary parts of dielectric constants were found to strongly depend on the annealing temperature. The optical energy gap decreased from 1.1 to 0.89 eV as the annealing temperature increased from 373 to 433K. These results indicate that thermal annealing is a major factor that can be used to tune the crystal structure, and hence the optical properties of As30Te67Ga3 system.


2021 ◽  
Author(s):  
Mayyada Muttar Fdhala ◽  
◽  
Ayser A. Hemed ◽  
Ramiz A. Al-Ansari ◽  
Raad M. Al-Haddad ◽  
...  

Schottky Diode (SD) Al/a-Se/Au as a solar cell (SC) was prepared by thermal evaporation technique (TET) on glass thin slide as a substrate under vacuum (10!" mbar). The Schottky Barrier (SB) have been prepared with different thicknesses (300, 500 and 700) nm in room temperature and (343) K annealing temperature. The current-voltage (IV) physical properties of the SB have got rectification properties and approved as a SC. This cell is developed with increased annealing temperatures and thickness of layers of SD. Experience under lighting shows good efficiency (η), which increased linearly with both thickness and annealing temperatures from (0.0318% to 4.064%) and from (0.0318% to 0.4778%). This is for three values of lighting power density (160, 230, 400) 𝑚𝑊/𝑐𝑚# in which the behave is similar. The best efficiency obtained in this work was (15.286)% at a power density of 400 𝑚𝑊/𝑐𝑚# , with thickness 700nm and 343K annealing temperature. Also (12.407)% at 230 𝑚𝑊/𝑐𝑚#, with thickness 500nm for the same annealing temperature.


2011 ◽  
Vol 8 (1) ◽  
pp. 155-160
Author(s):  
Baghdad Science Journal

Thin films of cadmium sulphoselenide (CdSSe) have been prepared by a thermal evaporation method on glass substrate, and with pressure of 4x10-5 mbar. The optical constants such as (refractive index n, dielectric constant ?i,r and Extinction coefficient ?) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of (CdSSe) films is calculate from (?h?)2 vs. photon energy curve. CdSSe films have a direct energy gap, and the values of the energy gap were found to increase when increasing annealing temperature. The band gap of the films varies from 1.68 – 2.39 eV.


2010 ◽  
Vol 7 (4) ◽  
pp. 1416-1420
Author(s):  
Baghdad Science Journal

InSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.


Sign in / Sign up

Export Citation Format

Share Document