scholarly journals Bacteriological and Physico-chemical Qualities of Halabja Drinking Water

2021 ◽  
pp. 3816-3826
Author(s):  
Othman Abdulrahman Mohammed

Water is crucial for all known forms of life without providing any calories or organic nutrients, while many people, especially in developing countries, may not be able to access pure and safe drinking water. They could lose their lives or become sick because waterborne diseases could contaminate the water, and when the chemical and/or physical properties of the water are not within the national and international standards. Thus, the present study aimed to evaluate water quality of the Halabja drinking water and Sirwan river. Halabja city is located to north of Iraq, north-east of the capital Baghdad. Every week of the year 2019, apart from official holidays, water samples were collected from each of river and several areas (4-10 sections) in Halabja for the bacteriological analysis, while chemical and physical water quality was monthly checked. The results showed no detectable waterborne pathogens in all drinking water samples. Additionally, values of pH, turbidity, total dissolved substances, and electrical conductivity of the purified water samples had ranges of 7.97–8.5, 0.02-0.8 NTU, 246–362 mg/L, and 383–566 µS/cm, respectively. The treated drinking water was free of Free Residual Chlorine (FRC) and nitrite. The amounts of chloride, sulfate, and nitrate varied during the year 2019, with ranges of 48.2- 73.8, 36-141.5, and 1-5 mg/L, respectively. The values of water hardness and Ca+2 and Mg+2 concentrations ranged 132- 344, 48–89.5, and 2.2-29.2 mg/L, respectively. Based on the results, values of all the above parameters were within the Iraqi and the World Health Organization (WHO) drinking water standards, although the value of water hardness and the concentration of Ca+2 were near the upper limits of the standards, which might cause harm to the human body.

2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hawraz Sami Khalid ◽  
Hoshyar Saadi Ali ◽  
Dhary Almashhadany

The present study was conducted to evaluate the quality of drinking water in randomly selected schools in Erbil city, Kurdistan Region, Iraq. The water quality indices such as the Heavy metal Pollution Index (HPI) and Heavy metal Evaluation Index (HEI) were applied to characterize water quality. Eighteen schools were incorporated and sampled for their water storage tanks available to students. Water samples and sediment samples from tanks floor were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer for the determination of twenty-two metal elements. In drinking water samples, all detected metals did not exceed the permissible limits of the World Health Organization. The results of this study showed that the average values of HPI and HEI for As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn were 54.442 and 0.221, respectively. According to data of the water quality indices, the schools drinking water quality are good and suitable for drinking in terms of heavy metals. However, sediments samples contained high concentrations of all elements including the toxic heavy metals (As, Cd, Cr, and Pb). Re-suspension of sediments into water column after refilling storage tanks can pose a serious threat to students drinking water from such vessels. It is therefore recommended that proper storage tanks are provided to the schools accompanied by continuous sanitation and hygiene practice to mitigate the corrosion of tanks to avoid health risks of toxic metal


1970 ◽  
Vol 24 (2) ◽  
pp. 163-165 ◽  
Author(s):  
Abdul Hussain Shar ◽  
Yasmeen F Kazi ◽  
Miandad Zardari ◽  
Irshad Hussain Soomro

Total coliform (TC) and faecal coliform (FC) bacteria were analyzed in drinking water of Khairpur city. Ninty samples were collected from main reservoir (source), distribution line and consumer taps. pH and residual chlorine of water samples were also determined. For bacteriological analysis inductively membrane filtration (MF) method was used for total coliform (TC) as well as faecal (FC) coliform bacteria. All samples were found contaminated with total coliform (TC) and faecal coliform (FC) and the counts were higher than the maximum microbial contaminant level (MMCL) established by World Health Organization (WHO). It was observed that pH was within the limits of WHO standard (6.5-8.5). The residual chlorine was not detected in any sample of drinking water. Bacteriologically the water quality of the drinking water is unsatisfactory.Keywords: Coliform, Escherichia coli, Water quality, Contamination, SanitationDOI: http://dx.doi.org/10.3329/bjm.v24i2.1266


2021 ◽  
Vol 5 (2) ◽  
pp. 112-116
Author(s):  
F., F. Akinola ◽  
M., O. Lasisi ◽  
B., S. Awe

Groundwater pollution has increased as a result of poor waste disposal practices in developing countries. The purpose of this study was to determine the levels of physicochemical parameters and heavy metal concentrations in order to investigate the impact of dumpsites on groundwater and soil quality in Erinfun community. Four (4) water samples were collected hand dug well and four (4) soil samples designated Ss1 to Ss4 were collected at distances of 10, 20, 30 and 40 m, respectively, away from the waste dumpsite. Physicochemical parameters and traces such as odour, colour, taste and temperature, as well as Biochemical Oxygen Demand, Chemical Oxygen Demand, Dissolve Oxygen, Total Dissolve Solid, pH, and chloride were measured in collected water samples. Collected soil samples were also analyzed for heavy metals such as Magnesium, Zinc, Iron, Chromium, and Lead. All the physical parameters of the water samples analysed were found not to be within the acceptable limit of World Health Organization and Nigerian Standard of Drinking Water Quality standards. The chemical constituents tested were within the acceptable limit of World Health Organization and Nigerian Standard of Drinking Water Quality except for the Biochemical Oxygen Demand, Chemical Oxygen Demand and Dissolve Oxygen of water samples 1 and 2, respectively. The concentration of trace metals in water sample test were within health limit except for Magnesium and Iron which has the highest concentrations in water sample 1 at 10 m away from dumpsite (61.00 mg/l and 0.46 mg/l). Consequently, open dumpsites are discouraged, and constructed standard landfills with appropriate monitoring guidelines are recommended.


Author(s):  
Odontuya G ◽  
Oyuntsetseg D ◽  
Khureldavaa O ◽  
Tsiiregzen A ◽  
Dulamsuren G ◽  
...  

This study aimed to determine water-rock interactions depending on mineralization and assess to detailed water quality  study of the well waters for drinking purpose in Bayanzurkh district. Totally, 55 well water samples were collected from 7subdistricts of Bayanzurkh district. Determinations of the all sample are performed by water quality parameters such as radiological, physico-chemical and chemical compositions and microbiological properties. The chemical data illustrates that the well waters were neutral to slightly alkaline, and total hardness observed in 46 water samples was soft to softer and 9 water samples was hard to very hard. The hydrochemical data indicates that 53 well waters belong to the HCO3- - Ca2+, Mg2+ type, and others are HCO3-- Mg2+ and SO42--Na+ type of water. The results were compared with National standard (MNS 0900:2018) and with World health organization (WHO, 2017) guidelines for drinking water quality. Among these 25 well waters were overrated by permissible concentration of MNS 0900:2018 and WHO guidelines for the following radiological, chemical compositions and microbiological properties. However, 30 well waters were suitable for drinking water by their permissible value of national standards. According to the Gibbs diagram, all studied well waters were belonging to the rock-water interaction dominance area which was indicated by hydrochemical processes. Баянзүрх дүүргийн гүний худгуудын усны гидрохимийн судалгаа Хураангуй: Энэхүү судалгаагаар Баянзүрх дүүргийн иргэдийн унд ахуйн хэрэгцээндээ ашиглаж буй гүний худгийн усанд нарийвчилсан судалгааг явуулсаны үндсэн дээр усны чанарыг үнэлэх мөн эрдэсжилтээс хамааруулан ус чулуулгийн харилцан үйлчлэлийг тодорхойлох зорилгоор энэхүү ажлыг хийж гүйцэтгэсэн. Баянзүрх дүүргийн 7 хороонд байрлах унд ахуйн зориулалтаар ашигладаг 55 гүний худгийн усны сорьцонд физик-хими, химийн найрлага, микроэлемент, бичил амь судлал болон цацрагийн аюулгүйн үзүүлэлтүүдийг тодорхойлсон болно. Судалгаанд хамрагдсан гүний худгуудын ус нь саармагаас сул шүлтлэг орчинтой, зөөлнөөс зөөлөвтөр устай 46 худаг, хатуувтараас хатуу устай 9 худаг байгаа ба 53 гүний худаг нь HCO3- - Ca2+, Mg2+-ийн төрлийн, бусад нь  HCO3-- Mg2+  болон SO42--Na+  төрлийн усны ангилалд хамаарагдаж байна. Баянзүрх дүүргийн иргэдийн унд ахуйн хэрэгцээндээ ашиглаж буй нийт 55 гүний худгийн ус судалгаанд хамрагдсанаас 25 худгийн ус нь зарим анион, катион болон бичил амь судлал, цацрагийн аюулгүйн үзүүлэлтээрээ Монгол улсад мөрдөгдөж байгаа ундны усны стандарт MNS 0900:2018 болон Дэлхийн Эрүүл Мэндийн байгууллагаас гаргасан улс орнуудын мөрддөг ундны усны стандарт шаардлагыг хангахгүй байна. Харин 30 гүний худгийн ус нь бүх үзүүлэлтээрээ Монгол улсад мөрдөж буй MNS 0900:2018 стандартын шаардлагыг хангаж байна. Ус, чулуулгийн харилцан үйлчлэлийг Гиббсийн диаграмм ашиглан тодорхойлоход худгуудын ус нь чулуулаг давамгайлсан мужид оршиж байгаа нь худгийн усны найрлага тухайн орчны геологийн тогтоц болон чулуулгаас хамаарч байгаа бөгөөд ус, чулуулгийн харилцан үйлчлэлд орж байна. Түлхүүр үг: Баянзүрх дүүрэг, ундны ус, химийн найрлага, гүний худаг, ус, чулуулаг


2020 ◽  
Vol 4 (2) ◽  
pp. 99
Author(s):  
Yaseen Ahmed Hamaamin ◽  
Jwan Bahadeen Abdullah

Water is vital for all forms of life on earth. Assessing the quality of water especially drinking water is one of the important processes worldwide which affect public health. In this study, the quality of drinking water in Sulaimani City is monitored for a study period of 1 year. A total number of 78 water samples were collected and analyzed for 17 physical and chemical properties of water supply system to the city. Samples of water are collected from the three main sources of drinking water for Sulaimani City (Sarchnar, Dukan line-1, and Dukan line-2) from February to August 2019. The results of physical and chemical parameters of collected water samples were compared with the World Health Organization and Iraqi standards for drinking water quality. The results of this study showed that mostly all parameters were within the standards except the turbidity parameter which was exceeded the allowable standards in some cases. This research concluded that, in general, the quality of drinking water at the three main sources of Sulaimani City is suitable and acceptable for drinking.


Author(s):  
S. Igbani ◽  
H. A. Ogoni ◽  
D. Appah

Experimentally, the aim of this research paper is to investigate the thickening time (TT) of different ferrous cement slurry systems in high-pressure and high-temperature (HPHT) environment. Objectively, the study collected eight (8) samples of groundwater from 8 different boreholes, as mix-water, from the study area, Kolo Creek. These mix-water samples were subjected to water chemistry analysis, based on the American Public Health Association (APHA) drinking water test methods; the results obtained from these tests were benchmarked with the standard values of World Health Organisation (WHO), and Nigeria Standard Drinking Water Quality (NSDWQ) standards. These results reveal that, in each of the tested mix-water samples, ferrous ion (Fe2+) concentration was higher (0.52 to 6.82mg/L); which is greater than 0.3mg/L, and this was the only chemical parameter that was in strong disagreement with the WHO’s and NSDWQ’s Drinking Water Quality standards. Subsequently, each of these ferrous mix-waters were used in the formulation of cement slurries at the water-to-cement ratio of 0.44 in batches; each of these formulated slurries were used, to test for the effects of ferrous ion concentration in mix-water on the TT performances of the slurries. These TT tests were performed using the Chandler model 7322 HPHT Consistometer. These tests were conducted based on the API Specification 10A methods of 1995. Generally, the results obtained reveal that, as the concentration of Fe2+increases in the mix-water, the TT of the cement slurry accelerated in the HPHT environment. This means that the cement slurry set faster. Also, this set-fast behaviour of high ferrous ion concentration towards slurry suggested that, high concentration of ferrous ion induced the exothermic reaction of tricalcium aluminate (C3A) during the hydration of the ferrous cement slurry. Therefore, ferrous neat cement slurry is only suitable for cementing shallow oil-well, except retarding additives are added into the slurry.


2021 ◽  
Author(s):  
Mastano Nambiro Woleson Dzimbiri ◽  
Jonathan Levy ◽  
Emmanuel Chilanga ◽  
Chifundo Mtenga ◽  
Oluwaseun Olubodun

Abstract Access to potable water is a public health problem in Malawi. Knowledge of water quality can significantly reduce waterborne diseases amongst users. The present study examines the groundwater quality for domestic use in Mpherembe, northwest of Mzimba district rural Malawi. Ten (10) water samples were collected from various sources and subsequently tested for physio-chemical and microbiological parameters using standard methods. The results obtained were compared against the Malawi Bureau of Standards (MS 733:2005) and World Health Organization (WHO) guidelines for drinking water quality. The microbiological examination of water samples revealed the presence of E. coli bacteria (range 62-136cfu/100m), and high levels of turbidity (range 5.58–46.8 NTU) in wells. However, Magnesium hardness and Electrical Conductivity (EC) were recorded high in boreholes compared to wells. The presence of faecal matter and high mineral concentration in domestic water is a health risk when consumed prior to treatment. To ensure public health safety, interventions that focus on household water treatment such as chlorination are recommended in this study area.


Author(s):  
Caroline Barituka Ganabel ◽  
Confidence Kinikanwo Wachukwu ◽  
Samuel Douglas Abbey ◽  
Easter Godwin Nwokah

Aim: This study aimed to assess the quality of drinking water in some hydrocarbon-impacted Ogoni communities. Study Design: The study employ a cross-sectional and analytical design using stratified sampling method. Place and Duration of Study: Department of Medical Laboratory Science of Rivers State University, Giolee Global Resource Limited and Environmental Consultancy Services between March 2020 and March 2021. Methodology: Water samples were collected from (20 hydrocarbon- impacted communities) in the 4 Local Government Area (LGAs) of Ogoni land. These water samples were analyzed to determine the physicochemical, bacteriological, heavy metal and total petroleum hydrocarbon (TPH) parameters using standard methods and operational procedures. The data obtained were subjected to descriptive statistical analysis. The general linearized model (GIG) was used to generate analysis of variance (ANOVA) mean and standard error and arrange, statistically significant was set as p-value of .05 (95% confidence limit). Pearson correlation test was used to calculate the correlation between TPH, Heavy metal, and physicochemical parameters in hydrocarbon and non-hydrocarbon impacted communities. All statistical analyses were performed using GraphPad Prism (Version 8). Results: The results obtained for physicochemical parameters were pH 4.3±0.8 mg/l, EC 0.03±0.05 mg/l, DO 5.5±1.6 mg/l, Temp 25.0±0.0 mg/l, Mv 0.32±0.27 mg/l, Nitrite 0.0058±013 mg/l, Nitrate 0.1530±158 mg/l. These results were all below the recommended standard for Nigeria standard of drinking water quality (NSDWQ) and World Health Organization (WHO). The bacteriological analyses were carried out using multiple tubes technique (Most Probable Number), total coliform count, (TC), total heterotrophic count (THBC) and total fungal count (TFC). The results obtained were 0.941±2.397 cfu/ml, 89.3±176.6 cfu/ml, 297.8±144.4 cfu/ml, and 0.32±0.84 cfu/ml respectively. The p-values for TFC (<0.0002) were statistically significant. Heavy metal profiling was: Cr 0.194±0.320 mg/l, Cd 0.469±0.569 mg/l, Cu 0.211±0.348 mg/l, Pb 0.0336±0.20 mg/l, Fe 0.705±1.244 mg/l, Zn 0.258±0.249 mg/l, respectively. Generally, the concentration of heavy metal   increased more than the standard recommended by NSDWQ and WHO except for Zn 0.255±0.249 mg/l, and Cu 0.56±0.50 mg/l, that is slightly lower than the acceptable limit recommended by WHO and NSWWQ. The sequences of heavy metal concentration were in Cd > Cr> Pb>Fe> Cu.>Zn. The statistical significance values for Pb p=.003 and for Zn p=.009 were statistically significant. The concentration of TPH were (349.9 ppm/ml) higher than the recommended values for NSDWQ and WHO. Conclusion: The findings in this research reviewed a worrisome level of TPH and Pb, and which could have devastating impact on bacterial biodiversity.


2021 ◽  
Author(s):  
Abubakar Bilyaminu Musa ◽  
Mala Babagana Gutti

This study investigates the variation in water quality parameters due to short term storage in reservoirs in north-east Nigeria. The objective of the study is to determine the water quality, testing selected vital parameters and determining the DWQI of the samples from selected water sources and their respective reservoirs. The World Health Organization (WHO), as well as the Canadian Council of Ministers of the Environment (CCME) standards of water quality test and drinking water quality indices, were adopted. Samples were collected at both source and reservoir from five different points in the same area. The quality of water was analyzed in order to determine the variation in water quality and drinking water quality indices when stored over time in a storage system. The result of the quality test revealed that the level of all the parameters were within the limit set by WHO except that of Iron and Manganese which were slightly above the standard limits. The correlated variables revealed that a very strong relationship exists between all the samples with the highest R2 as 0.99 and the lowest R2 as 0.94. The drinking water quality indices were found to be good for all samples with an index value of 88.45%. This study strongly recommends further investigation as well as regular monitoring of the drinking water quality in the area.


2017 ◽  
Vol 12 (1) ◽  
pp. 06-17 ◽  
Author(s):  
Mohamed Albratty ◽  
Ismail Arbab ◽  
Hassan Alhazmi ◽  
Ibraheem Attafi ◽  
Abdul Al-Rajab

Requisite reference facts about essential elements in treated and plastic bottled drinking water is usually mentioned on the products. However, more information is sometime crucial regarding trace elements in treated, bottled and other sources of drinking water such as tap water to evaluate their quality. This study is aimed to evaluate drinking water quality in the main governorates (Jazan, Sabya and Abu Arish) of Jazan province located in the South-Western region of Kingdom of Saudi Arabia. This is the first such study carried out in Jazan city so that the research team can come out with valuable recommendations in the issue. The research team has collected a sum of 68 water samples from different sources comprising hospitals (treated tap water), stations for drinking water treatment (large blue bottles of drinking water) and bottled drinking water (purchased from local markets). Using inductively coupled plasma-mass spectrometry (ICP-MS), the concentrations of 20 elements were determined. The physiochemical parameters of water samples were measured. All parameters were within the recommended limits of the World Health Organization (WHO, 2011) and Gulf Cooperation Council Standardization Organization (GSO, 2008). Trace and major elements were found to be below the standard guideline values , except for uranium in some tap water samples. This preliminary study will significantly improve the awareness and knowledge among the society about the drinking water quality in Jazan area.


Sign in / Sign up

Export Citation Format

Share Document