scholarly journals PFDINN: Comparison between Three Back-propagation Algorithms for Pear Fruit Disease Identification

2021 ◽  
pp. 3128-3137
Author(s):  
Samar Amil Qassir

     The diseases presence in various species of fruits are the crucial parameter of economic composition and degradation of the cultivation industry around the world. The proposed pear fruit disease identification neural network (PFDINN) frame-work to identify three types of pear diseases was presented in this work. The major phases of the presented frame-work were as the following: (1) the infected area in the pear fruit was detected by using the algorithm of K-means clustering. (2) hybrid statistical features were computed over the segmented pear image and combined to form one descriptor. (3) Feed forward neural network (FFNN), which depends on three learning algorithms of back propagation (BP) training, namely Scaled conjugate gradient (SCG-BP), Resilient (R-BP) and Bayesian regularization (BR-BP), was used in the identification process. Pear fruit was taken as the experiment case during this work with three classifications of diseases, namely fire blight, pear scab, and sooty blotch, as compared to healthy pears. PFDINN framework was trained and tested using 2D pear fruit images collected from the Fruit Crops Diseases Database (FCDD). The presented framework achieved 94.6%, 97.3%, and 96.3% efficiency for SCG-BP, R-BP, and BR-BP, respectively. An accuracy value of 100% was achieved when the R-BP learning algorithm was trained for identification.

Author(s):  
Nadia Dwi Kartika ◽  
I Wayan Astika ◽  
Edi Santosa

Forecasting of oil palm yield has become a main factor in the management of oil palm industries for proper planning and decision making in order to avoid monthly high cost in harvesting. Predicting future value of oil palm yield with minimum error becomes an important issue recently. A lot of factors determine the productivity of oil palm and weather variables play an important role that affect plant growth and development that may reduce yield significantly. This research used secondary data of yield and weather variables available in company administration. It proposed feed forward neural network with back propagation learning algorithm to build a monthly yield forecasting model. The optimization procedure of ANN architecture obtained the best using 60 neurons in input layer, five hidden layers and one neuron in the output layer. Training data were from January 2005 to June 2008 while testing data were from July 2008 to December 2009. ANN architecture using five hidden layers gave the best accuracy with MAE 0.5346 and MSE 0.4707 while the lowest accuracy occurred by using two hidden layers with MAE 1.5843and MSE 4.087.


2013 ◽  
Vol 718-720 ◽  
pp. 1973-1979 ◽  
Author(s):  
Jin Song Yuan ◽  
Yi Wang

BP neural network is a multilayer feed-forward neural network, it achieved from input to output arbitrary nonlinear mapping, and weights are adjusted by using the back propagation learning algorithm. Intrusion detection systems using the learning ability of neural network to extract the network data profile, and it also can use the neural network has the ability of self-learning and parallel processing ability, through the construction of intelligent neural network classifier to identify abnormal, so as to achieve the purpose of detecting intrusion behavior. The paper proposes the development of intrusion detection system based on improved BP neural network. Experimental results show that the proposed algorithm has high efficiency.


2010 ◽  
Vol 44-47 ◽  
pp. 3119-3122
Author(s):  
Qi Fan ◽  
Chang Jie Zhu ◽  
Bao Hua Wang ◽  
Jian Yu Xiao

Engineers often meet function regression problems in manufacturing. In this work, we use artifical neural network to solve this problem. We choose a typical function as the target function. Since the input value of the function is continuous, the output of the regression model should also have a continuous value range. We implement the feed forward neural network with back propagation learning algorithm, investigate different network parameters, and compare several different training algorithms. The performance assessment based on the test dataset is also discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tushar Jain

PurposeThe overall goal of this research is to develop algorithms for feature-based recognition of 2D parts from intensity images. Most present industrial vision systems are custom-designed systems, which can only handle a specific application. This is not surprising, since different applications have different geometry, different reflectance properties of the parts.Design/methodology/approachComputer vision recognition has attracted the attention of researchers in many application areas and has been used to solve many ranges of problems. Object recognition is a type of pattern recognition. Object recognition is widely used in the manufacturing industry for the purpose of inspection. Machine vision techniques are being applied in areas ranging from medical imaging to remote sensing, industrial inspection to document processing and nanotechnology to multimedia databases. In this work, recognition of objects manufactured in mechanical industry is considered. Mechanically manufactured parts have recognition difficulties due to manufacturing process including machine malfunctioning, tool wear and variations in raw material. This paper considers the problem of recognizing and classifying the objects of such mechanical part. Red, green and blue RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. Artificial neural network (ANN) is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects as well as the effect of learning rate and momentum.FindingsOne important finding is that there is not any considerable change in the network performances after 500 iterations. It has been found that for data smaller network structure, smaller learning rate and momentum are required. The relative sample size also has a considerable effect on the performance of the classifier. Further studies suggest that classification accuracy is achieved with the confusion matrix of the data used. Hence, with these results the proposed system can be used efficiently for more objects. Depending upon the manufacturing product and process used, the dimension verification and surface roughness may be integrated with proposed technique to develop a comprehensive vision system. The proposed technique is also highly suitable for web inspections, which do not require dimension and roughness measurement and where desired accuracy is to be achieved at a given speed. In general, most recognition problems provide identity of object with pose estimation. Therefore, the proposed recognition (pose estimation) approach may be integrated with inspection stage.Originality/valueThis paper considers the problem of recognizing and classifying the objects of such mechanical part. RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. ANN is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects as well as the effect of learning rate and momentum.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


Author(s):  
Rasheed Adekunle Adebayo ◽  
Mehluli Moyo ◽  
Evariste Bosco Gueguim-Kana ◽  
Ignatius Verla Nsahlai

Artificial Neural Network (ANN) and Random Forest models for predicting rumen fill of cattle and sheep were developed. Data on rumen fill were collected from studies that reported body weights, measured rumen fill and stated diets fed to animals. Animal and feed factors that affected rumen fill were identified from each study and used to create a dataset. These factors were used as input variables for predicting the weight of rumen fill. For ANN modelling, a three-layer Levenberg-Marquardt Back Propagation Neural Network was adopted and achieved 96% accuracy in prediction of the weight of rumen fill. The precision of the ANN model’s prediction of rumen fill was higher for cattle (80%) than sheep (56%). On validation, the ANN model achieved 95% accuracy in prediction of the weight of rumen fill. A Random Forest model was trained using a binary tree-based machine-learning algorithm and achieved 87% accuracy in prediction of rumen fill. The Random Forest model achieved 16% (cattle) and 57% (sheep) accuracy in validation of the prediction of rumen fill. In conclusion, the ANN model gave better predictions of rumen fill compared to the Random Forest model and should be used in predicting rumen fill of cattle and sheep.


2009 ◽  
Vol 19 (04) ◽  
pp. 285-294 ◽  
Author(s):  
ADNAN KHASHMAN

Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.


2008 ◽  
Vol 273-276 ◽  
pp. 323-328 ◽  
Author(s):  
H. Khorsand ◽  
M. Arjomandi ◽  
H. Abdoos ◽  
S.H. Sadati

Heat treatment is an important method for improving the mechanical properties of industrial parts that are made through the powder metallurgy. Most PM steels are subjected to hardening and tempering, and it is due to this treatment that tempered martensite is formed. After heat treatment, these steel’s mechanical properties are affected by the heat treatment parameters and the initial density. In this paper, in order to make an evaluation of the effect of the above parameters, FN-0205 PM steel with various densities is heat treated in different austenite conditions and tempering time. Their mechanical properties are then evaluated and recorded. Afterwards, this data obtained by experimental procedure are predicted for various conditions. The method employed here is the well-known feedforward Artificial Neural Network (ANN) with the Back Propagation (BP) learning algorithm. Comparison between predicted values and experimental data, in the present study, indicate that the predicted results from this model are in good agreement with the experimental values.


Automatic speech recognition has attained a lot of significance as it can act as easy communication link between machines and humans. This mode of communication is easy for man to use as it is effortless and easy. Many approaches for extraction of the features of the speech and classification of speech have been considered. This paper unveils the importance of neutral network and the way it can be used for recognition of speech. Mel Frequency Cepstrum Coefficients is made use of for extraction of the features from the voice. For pattern matching neural network has been used. MATLAB has been used to show how the speech is recognized. In this paper the speech recognition has been done firstly by multilayer feed forward neural network using Back propagation algorithm. Then the process of speech recognition is shown by using Radial basis function neural network. The paper then analyzes the performance of both the algorithms and experimental result shows that BPNN outperforms the RBFNN.


Sign in / Sign up

Export Citation Format

Share Document