Mucin mRNA Expression in Normal and Vasomotor Inferior Turbinates

1997 ◽  
Vol 11 (4) ◽  
pp. 293-302 ◽  
Author(s):  
Michelle R. Aust ◽  
Cathy S. Madsen ◽  
Anita Jennings ◽  
Jan L. Kasperbauer ◽  
Sandra J. Gendler

Mucins are the major glycoprotein component of respiratory tract secretions. Little is known about their expression in the upper respiratory tract. In order to define this expression, in situ hybridization was performed on 19 normal and 4 vasomotor rhinitis (VMR) inferior turbinates to identify mucin mRNA. MUC1, MUC2, MUC4, MUC5AC, MUC5B, and MUC7 were expressed in both the normal and VMR turbinates. MUC 4 and MUC5AC were the most highly expressed mucins. MUC1, MUC2, MUC4, and MUC5AC were expressed mainly by the epithelial border, whereas MUC5B and MUC7 were expressed by the submucosal glands. MUC1 and MUC4 exhibited a diffuse expression by multiple cell types along the mucosal border, whereas MUC2 and MUC5AC expression appeared to be limited to a subpopulation of epithelial cells, most likely goblet cells. Although MUC1, MUC4, and MUC5AC showed sporadic submucosal glandular expression, MUC5B and MUC7 appeared to be the predominant submucosal gland mucins in the inferior turbinates. MUC3 and MUC6 expression, which have been found primarily in the gastric mucosa, were not seen in any of the inferior turbinate samples examined. The only difference seen between normal and VMR turbinates was a slight decrease in MUC1 expression in the VMR group. The variety of mucins expressed and the diversity of their expression patterns may have significance in terms of the rheologic and particle clearance properties of nasal secretions. Understanding the expression patterns in normal turbinates will serve as the foundation for further study of these mucins in disease states.

2021 ◽  
Author(s):  
Nageswari Yarravarapu ◽  
Rohit Sai Reddy Konada ◽  
Narek Darabedian ◽  
Nichole J. Pedowtiz ◽  
Soumya N. Krishnamurthy ◽  
...  

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ however use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAz-ylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


2021 ◽  
Author(s):  
Chrissy Eckstrand ◽  
Tom Baldwin ◽  
Mia Kim Torchetti ◽  
Mary Lea Killian ◽  
Kerry A Rood ◽  
...  

The breadth of animal hosts that are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may serve as reservoirs for continued viral transmission are not known entirely. In August 2020, an outbreak of SARS-CoV-2 occurred in multiple mink farms in Utah and was associated with high mink mortality and rapid viral transmission between animals. The outbreak's epidemiology, pathology, molecular characterization, and tissue distribution of virus within infected mink is provided. Infection of mink was likely by reverse zoonosis. Once established, infection spread rapidly between independently housed animals and farms, and caused severe respiratory disease and death. Clinical signs were most notably sudden death, anorexia, and increased respiratory effort. Gross pathology examination revealed severe pulmonary congestion and edema. Microscopically there was pulmonary edema with moderate vasculitis, perivasculitis, and fibrinous interstitial pneumonia. Reverse transcriptase polymerase chain reaction (RT-PCR) of tissues collected at necropsy demonstrated the presence of SARS-CoV-2 viral RNA in multiple organs including nasal turbinates, lung, tracheobronchial lymph node, epithelial surfaces, and others. Whole genome sequencing from multiple mink was consistent with published SARS-CoV-2 genomes with few polymorphisms. The Utah mink SARS-CoV-2 strain fell into Clade GH, which is unique among mink and other animal strains sequenced to date and did not share other spike RBD mutations Y453F and F486L found in mink. Localization of viral RNA by in situ hybridization revealed a more localized infection, particularly of the upper respiratory tract. Mink in the outbreak reported herein had high levels of virus in the upper respiratory tract associated with mink-to-mink transmission in a confined housing environment and were particularly susceptible to disease and death due to SARS-CoV-2 infection.


2002 ◽  
Vol 26 (8) ◽  
pp. 1024-1031 ◽  
Author(s):  
M. Ali Ansari-Lari ◽  
Mohammad O. Hoque ◽  
Joseph Califano ◽  
William H. Westra

1995 ◽  
Vol 171 (5) ◽  
pp. 1329-1333 ◽  
Author(s):  
E. Arruda ◽  
T. R. Boyle ◽  
B. Winther ◽  
D. C. Pevear ◽  
J. M. Gwaltney ◽  
...  

2012 ◽  
Vol 19 (5) ◽  
pp. 757-765 ◽  
Author(s):  
Rajeev Rudraraju ◽  
Sherri L. Surman ◽  
Bart G. Jones ◽  
Robert Sealy ◽  
David L. Woodland ◽  
...  

ABSTRACTVitamin A deficiency (VAD) has profound effects on immune responses in the gut, but its effect on other mucosal responses is less well understood. Sendai virus (SeV) is a candidate human parainfluenza virus type 1 (hPIV-1) vaccine and a candidate vaccine vector for other respiratory viruses. A single intranasal dose of SeV elicits a protective immune response against hPIV-1 within days after vaccination. To define the effect of VAD on acute responses toward SeV, we monitored both antibodies and CD8+T cells in mice. On day 10 following SeV infection, there was a trend toward lower antibody activities in the nasal washes of VAD mice than in those of controls, while bronchoalveolar lavage (BAL) fluid and serum antibodies were not reduced. In contrast, there was a dramatic reduction of immunodominant CD8+T cell frequencies in the lower respiratory tract (LRT) airways of VAD animals. These T cells also showed unusually high CD103 (the αE subunit of αEβ7) expression patterns. In both VAD and control mice, E-cadherin (the ligand for αEβ7) was better expressed among epithelial cells lining the upper respiratory tract (URT) than in LRT airways. The results support a working hypothesis that the high CD103 expression among T cell populations in VAD mice alters mechanisms of T cell cross talk with URT and LRT epithelial cells, thereby inhibiting T cell migration and egress into the lower airway. Our data emphasize that the consequences of VAD are not limited to gut-resident cells and characterize VAD influences on an immune response to a respiratory virus vaccine.


2018 ◽  
Author(s):  
A. Paul ◽  
Y.J. Wang ◽  
C. Brännmark ◽  
S. Kumar ◽  
M. Bonn ◽  
...  

AbstractLipid droplets (LDs) are highly dynamic organelles that store neutral lipids, primarily triacylglycerols (TAGs), and are found in many cell types. While their primary function is to store excess energy, LDs are also modified in different disease states and during developmental processes. In many cases, not only the presence, but also the composition, of LDs can be equally important. In humans, LD composition has been linked to diseases such as type 2 diabetes; in plants and yeast, LD composition is relevant for engineering these organisms into biological factories in, e.g., algal bioenergy or food oil production. Therefore, lipid analysis of biological LDs with high speed and accuracy in situ is a very active area of research. Here we present an approach for in situ, quantitative TAG analysis using label-free, coherent Raman microscopy to decipher LD TAG composition in different biochemically complex samples. Our method allows direct visualization of inter-LD compositional heterogeneity of physiological quantities – TAG chain length and number of C=C bonds – with sub-micrometer spatial resolution within 5-100 milliseconds. Combined with virtually no sample preparation, this approach should enable rapid and accurate TAG LD analysis for a variety of applications.


2019 ◽  
Author(s):  
Ryoji Amamoto ◽  
Mauricio D. Garcia ◽  
Emma R. West ◽  
Jiho Choi ◽  
Sylvain W. Lapan ◽  
...  

ABSTRACTRecent transcriptional profiling technologies are uncovering previously-undefined cell populations and molecular markers at an unprecedented pace. While single cell RNA (scRNA) sequencing is an attractive approach for unbiased transcriptional profiling of all cell types, a complementary method to isolate and sequence specific cell populations from heterogeneous tissue remains challenging. Here, we developed Probe-Seq, which allows deep transcriptional profiling of specific cell types isolated using RNA as the defining feature. Dissociated cells are labelled using fluorescent in situ hybridization (FISH) for RNA, and then isolated by fluorescent activated cell sorting (FACS). We used Probe-Seq to purify and profile specific cell types from mouse, human, and chick retinas, as well as the Drosophila midgut. Probe-Seq is compatible with frozen nuclei, making cell types within archival tissue immediately accessible. As it can be multiplexed, combinations of markers can be used to create specificity. Multiplexing also allows for the isolation of multiple cell types from one cell preparation. Probe-Seq should enable RNA profiling of specific cell types from any organism.


Science ◽  
2021 ◽  
Vol 372 (6547) ◽  
pp. eaba2609
Author(s):  
Sneha Berry ◽  
Nicolas A. Giraldo ◽  
Benjamin F. Green ◽  
Tricia R. Cottrell ◽  
Julie E. Stein ◽  
...  

Next-generation tissue-based biomarkers for immunotherapy will likely include the simultaneous analysis of multiple cell types and their spatial interactions, as well as distinct expression patterns of immunoregulatory molecules. Here, we introduce a comprehensive platform for multispectral imaging and mapping of multiple parameters in tumor tissue sections with high-fidelity single-cell resolution. Image analysis and data handling components were drawn from the field of astronomy. Using this “AstroPath” whole-slide platform and only six markers, we identified key features in pretreatment melanoma specimens that predicted response to anti–programmed cell death-1 (PD-1)–based therapy, including CD163+PD-L1– myeloid cells and CD8+FoxP3+PD-1low/mid T cells. These features were combined to stratify long-term survival after anti–PD-1 blockade. This signature was validated in an independent cohort of patients with melanoma from a different institution.


2018 ◽  
Author(s):  
Xiaoyan Qian ◽  
Kenneth D. Harris ◽  
Thomas Hauling ◽  
Dimitris Nicoloutsopoulos ◽  
Ana B. Muñoz-Manchado ◽  
...  

Understanding the function of a tissue requires knowing the spatial organization of its constituent cell types. In the cerebral cortex, single-cell RNA sequencing (scRNA-seq) has revealed the genome-wide expression patterns that define its many, closely related cell types, but cannot reveal their spatial arrangement. Here we introduce probabilistic cell typing by in situ sequencing (pciSeq), an approach that leverages prior scRNA-seq classification to identify cell types using multiplexed in situ RNA detection. We applied this method to map the inhibitory neurons of hippocampal area CA1, a cell system critical for memory function, for which ground truth is available from extensive prior work identifying the laminar organization of subtly differing cell types. Our method confidently identified 16 interneuron classes, in a spatial arrangement closely matching ground truth. This method will allow identifying the spatial organization of fine cell types across the brain and other tissues.


Author(s):  
Shahar Alon ◽  
Daniel R Goodwin ◽  
Anubhav Sinha ◽  
Asmamaw T Wassie ◽  
Fei Chen ◽  
...  

Abstract:Methods for highly multiplexed RNA imaging are limited in spatial resolution, and thus in their ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion microscopy, which physically expands biological specimens, for long-read untargeted and targeted in situ RNA sequencing. We applied untargeted expansion sequencing (ExSeq) to mouse brain, yielding readout of thousands of genes, including splice variants and novel transcripts. Targeted ExSeq yielded nanoscale-resolution maps of RNAs throughout dendrites and spines in neurons of the mouse hippocampus, revealing patterns across multiple cell types; layer-specific cell types across mouse visual cortex; and the organization and position-dependent states of tumor and immune cells in a human metastatic breast cancer biopsy. Thus ExSeq enables highly multiplexed mapping of RNAs, from nanoscale to system scale.One Sentence SummaryIn situ sequencing of physically expanded specimens enables multiplexed mapping of RNAs at nanoscale, subcellular resolution.


Sign in / Sign up

Export Citation Format

Share Document