Volatile yield as indicator of carbon reduction in coke residue of coal sample

2018 ◽  
Vol 12 ◽  
pp. 208-214
Author(s):  
V.G. Cherechukin ◽  
◽  
E.I. Lyubomishchenko ◽  
E.I. Kolesnichenko ◽  
◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


2021 ◽  
Vol 67 (2) ◽  
pp. 205-227
Author(s):  
Marilyn A. Brown ◽  
Blair Beasley ◽  
Fikret Atalay ◽  
Kim M. Cobb ◽  
Puneet Dwiveldi ◽  
...  

AbstractSubnational entities are recognizing the need to systematically examine options for reducing their carbon footprints. However, few robust and comprehensive analyses are available that lay out how US states and regions can most effectively contribute. This paper describes an approach developed for Georgia—a state in the southeastern United States called “Drawdown Georgia”, our research involves (1) understanding Georgia’s baseline carbon footprint and trends, (2) identifying the universe of Georgia-specific carbon-reduction solutions that could be impactful by 2030, (3) estimating the greenhouse gas reduction potential of these high-impact 2030 solutions for Georgia, and (4) estimating associated costs and benefits while also considering how the solutions might impact societal priorities, such as economic development opportunities, public health, environmental benefits, and equity. We began by examining the global solutions identified by Project Drawdown. The resulting 20 high-impact 2030 solutions provide a strategy for reducing Georgia’s carbon footprint in the next decade using market-ready technologies and practices and including negative emission solutions. This paper describes our systematic and replicable process and ends with a discussion of its strengths, weaknesses, and planned future research.


2019 ◽  
Vol 17 (1) ◽  
pp. 1449-1458
Author(s):  
Gao Zhixiang ◽  
Guo Hongyu ◽  
Dong Zhiwei ◽  
Luo Yuan ◽  
Xia Daping

AbstractIn order to analyze the feasibility of chemical softening on low rank coals, bituminous coal was collected from the Qianqiu mine in Henan Province, China, and soaked in water and alkaline solution for different lengths of time. The complete stress-strain and acoustic emission (AE) experiments on the coal samples under uniaxial compression were tested on the RMT-150B Rock Mechanics Testing System and DS2 series AE signal analyzer. The results showed that the coal samples soaked in the water and alkaline solution present different characteristics in the deformation and failure process. As we increase the soaking time, the uniaxial compressive strength and deformation degree of the soaked coal samples in the alkaline solution and water decreased by 42.7% and 94.8% respectively. In the loading test, an AE signal is generated in all coal samples and the maximum ringing count rate and AE energy rate are present near the stress maximum for a short time. Moreover, the ringing count rate and AE energy rate have a good consistency with the stress-strain of the coal samples. The cumulative ringing count of the two groups soaked in water and alkaline solution decreased by 51% and 89% compared to the original coal sample. However, the decreased degree of the samples soaked in the alkaline solution is much higher than that of those soaked in water and the results showed that the alkaline solution has a better softening effect on the coal sample. With the increase of the alkaline solution concentration, the contact angle decreased from 112.5° to 41°. Through microscope and scanning electron microscopy (SEM) analysis of the soaked coal samples, we found that the pores and fissures increased, the structure of coal became loose, and the mechanical strength decreased sharply after soaking in the alkaline solution, thus achieving a chemical softening effect.


Author(s):  
Dandan Liu ◽  
Dewei Yang ◽  
Anmin Huang

China has grown into the world’s largest tourist source market and its huge tourism activities and resulting greenhouse gas (GHG) emissions are particularly becoming a concern in the context of global climate warming. To depict the trajectory of carbon emissions, a long-range energy alternatives planning system (LEAP)-Tourist model, consisting of two scenarios and four sub-scenarios, was established for observing and predicting tourism greenhouse gas peaks in China from 2017 to 2040. The results indicate that GHG emissions will peak at 1048.01 million-ton CO2 equivalent (Mt CO2e) in 2033 under the integrated (INT) scenario. Compared with the business as usual (BAU) scenario, INT will save energy by 24.21% in 2040 and reduce energy intensity from 0.4979 tons of CO2 equivalent/104 yuan (TCO2e/104 yuan) to 0.3761 Tce/104 yuan. Although the INT scenario has achieved promising effects of energy saving and carbon reduction, the peak year 2033 in the tourist industry is still later than China’s expected peak year of 2030. This is due to the growth potential and moderate carbon control measures in the tourist industry. Thus, in order to keep the tourist industry in synchronization with China’s peak goals, more stringent measures are needed, e.g., the promotion of clean fuel shuttle buses, the encouragement of low carbon tours, the cancelation of disposable toiletries and the recycling of garbage resources. The results of this simulation study will help set GHG emission peak targets in the tourist industry and formulate a low carbon roadmap to guide carbon reduction actions in the field of GHG emissions with greater certainty.


Author(s):  
Dede Long ◽  
Grant H. West ◽  
Rodolfo M. Nayga

Abstract The agriculture and food sectors contribute significantly to greenhouse gas emissions. About 15 percent of food-related carbon emissions are channeled through restaurants. Using a contingent valuation (CV) method with double-bounded dichotomous choice (DBDC) questions, this article investigates U.S. consumers’ willingness to pay (WTP) for an optional restaurant surcharge in support of carbon emission reduction programs. The mean estimated WTP for a surcharge is 6.05 percent of an average restaurant check, while the median WTP is 3.64 percent. Our results show that individuals have a higher WTP when the surcharge is automatically added to restaurant checks. We also find that an information nudge—a short climate change script—significantly increases WTP. Additionally, our results demonstrate that there is heterogeneity in treatment effects across consumers’ age, environmental awareness, and economic views. Our findings suggest that a surcharge program could transfer a meaningful amount of the agricultural carbon reduction burden to consumers that farmers currently shoulder.


1966 ◽  
Vol 74 (851) ◽  
pp. 244-248
Author(s):  
Makoto KINOSHITA ◽  
Yoshiteru HAMANO

2010 ◽  
Vol 7 (4) ◽  
pp. 1254-1257 ◽  
Author(s):  
K. H. Shivaprasad ◽  
M. M. Nagabhushana ◽  
C. Venkataiah

Ash, an inorganic matter present in coal is amenable for dissolution using suitable reagents. Thus the dissolution of ash and its subsequent removal reduces the release of many toxic elements into the environment by coal based industries. Removal of ash also enhances the calorific value. In the present investigation an attempt has been made to reduce the ash content of raw coal obtained from nearest thermal power by using hydrochloric acid, sulfuric acid and sodium hydroxide. A series of leaching experiments were conducted on coal of different size fractions by varying the parameters like concentration, temperature and time of leaching. The results indicate that it is possible to remove nearly 75% of ash from coal sample by leaching.


Sign in / Sign up

Export Citation Format

Share Document