Research of seismic influence on buildings and structures of Satka town while exploding explosive works on the Karagayskiy career in constrained conditions

Author(s):  
P. V. Menshikov ◽  
S. S. Taranzhin ◽  
A. S. Flyagin

The analysis of methods for determining the permissible speed of seismic vibrations of the soil at the base of the protected objects of Satka town. The maximum permissible values of the rate of vibration of the soil were determined for the buildings and structures of the industrial site of the Karagaiskiy quarry of the mining enterprise PJSC “Kombinat “Magnezit” (buildings of the administrative household plant, underground steel water pipeline, pump station), as well as for residential and industrial buildings. Approximating functions are constructed and empirical correlation equations are obtained for the mining and geological conditions of the Karagaiskiy quarry, confirming the equation of M.A. Sadovskiy. Actual seismicity coefficients and seismic wave attenuation indices were determined based on instrumental measurements of the speed of seismic vibrations of soil at positive and negative rock temperatures from 2004 to 2019 for the geological conditions of the Karagaiskiy open pit in order to refine and evaluate the seismic safety of residential and industrial buildings, structures and natural infrastructure facilities of Satka town, Chelyabinsk region. Design decisions on the seismic safety of guarded facilities during blasting operations in cramped conditions during mining of the north-western section of the Karagaiskiy quarry were confirmed and the parameters of drilling and blasting operations ensuring the seismic safety of guarded facilities were clarified.

2020 ◽  
Vol 174 ◽  
pp. 01016
Author(s):  
Aleksey Novinkov ◽  
Sergey Protasov ◽  
Pavel Samusev

At present, there are no standard methods for assessing seismic safety of underground mines during blasting on the earth’s surface. The need for such assessments arises when underground mines are located near open-pit coal mines, when the mine fields development is continued into the open pit, and when open surface coal mines use highwall miners. The issues of assessing seismic safety can be complicated by the lack of experimental data on vibration parameters, for example, if the answer is already required at the stage of new mines designing. The paper also provides an analysis of experimental data, including the results of monitoring the state of underground mines during seismic impacts of varying degrees of intensity. It is shown that the spread of the observed PPV, at which local damage or deformation of the underground mines has taken place, attains high values. In the absence of such data for underground mines in specific mining and geological conditions, it is recommended that the maximum allowable PPV vпр be assigned taking into account the class of underground mines and the type of support. At the same time, it is noted that the recommended vпр values given in the literature relate to the openings that were driven in the solid without geological disturbances and anomalies; not deviating from regulatory requirements regarding the state of workings; in the absence of danger of groundwater breakthrough; in the absence of danger of gas-dynamic phenomena, and other negative factors. If this is not the case, according to the requirements of the Federal norms and rules of industrial safety, the seismic safety distance should be increased by 2 times. This requirement is equivalent to multiplying the maximum permissible vibration velocity by a decreasing coefficient k=2b, where the power of two is the regression parameter b obtained from the experimental data processing.


Author(s):  
B Hussan ◽  
M.I Lozynska ◽  
D.K Takhanov ◽  
A.O Oralbay ◽  
S.L Kuzmin

Purpose. To develop a methodology for assessing the quality of drilling-and-blasting operations when setting the side to the final position. In this regard, it is necessary to study the nature of deformations in the near-side masses of the design open-pit contours and to assess the seismic impact of blast waves in accordance with damage in the near and far zones from the open-pit boundary, as well as the level of generated seismic vibrations. Methodology.A methodology for assessing the quality of drilling-and-blasting operations at the limiting contour of open pits is developed using the analysis of the mining-and-geological conditions of the rocks constituting the field, in-situ surveying of the state of the open-pit sides, analysis of the physical-mechanical properties of the host rocks, analytical studies and instrumental measurements of the blasting effect. Findings.Based on the analytical methods, the calculation and analysis of the seismicity coefficient of the rocks at the field have been performed. By means of instrumental measurement of the blasting effect in open pit, data have been obtained on the seismic impact of blasting operations on the near-side mass. Based on the results of these works, a methodology for assessing drilling-and-blasting operations at the limiting contour of the open pit has been developed. Originality.In this work, to assess the blasting effect, the seismicity coefficient of the rock mass is used, which characterizes the degree of elastic response to external dynamic influence and is a parameter that determines the elastic seismic wave intensity with distance from the site of blasting operations. Based on the calculation, a map of the seismicity coefficient distribution in the open-pit area has been compiled. Using the method of instrumental measurements, which serves to determine the seismic impact of blasting on a rock mass, the degree of blasting effect on a near-side mass has been revealed. This made it possible to develop a method for assessing the blasting quality, based on determining the percentage of permissible deviations in the face drilling quality. Practical value.The results of the work will be used to calculate the safe parameters of conducting the blasting operations when setting the side to the final position. This method for assessing the quality of drilling-and-blasting operations can be applied at any mining enterprise conducting open-cut mining of minerals.


Author(s):  
Viacheslav Kutuev ◽  
◽  
Sergei Zharikov ◽  

Introduction. This article shows the results of investigating the allowable dynamic load on the II category high-pressure gas pipeline installation site located within the borders of a mine take, which is connected with blasting at SLK Cement open pit. Research aim. The research is aimed at increasing the level of secure operation of a gas pipeline and establishing restrictions in the seismic impact of mining (blasting) towards the gas pipeline installation site. Methodology. The methods of IM UB RAS has been applied concerning the determination of allowable distances from a blast in the open pit to the secure facility (gas pipeline) depending on the mass of the explosive at the timing stage, soil condition coefficient, and the allowable speed of seismic vibrations. Results. It has been determined that taking into account the depth of blast in the open pit and corresponding geological conditions, by means of changing mass at the timing stage, it is possible to totally eliminate the negative impact of a blast on a gas pipeline installation site. A design scheme has been proposed to determine secure distances to the high-pressure gas pipeline depending on the angle of open pit slope and the depth of blasting in the open pit. Summary. A dynamic design analysis has been carried out of blasting force action on soil and highpressure gas pipeline. It has been recommended to establish some restrictions in explosive mass at the level of minimum hazardous values. And for the future blasts it is also recommended to design a charge initiation scheme with explosive mass of less than one ton at the timing stage.


2020 ◽  
Vol 177 ◽  
pp. 03021 ◽  
Author(s):  
Pavel Menshikov ◽  
Semen Taranzhin ◽  
Alexander Flyagin

The analysis of the values of the permissible speed of seismic vibrations and the calculation of the limiting values of short-term vibration at the base of the protected objects of Ust-Katav town and the settlement of Maliy Berdyash are carried out. Instrumental measurements of the speed of seismic vibrations of soil and pressure at the front of an air shock wave (air blast) during a large-scale blast in a quarry of building stone (dolomites) of «Ust-Katavskiy Granite Quarry» LLC (UKGK) were carried out in order to determine and evaluate safe seismic and shock air the impact of blasting on residential buildings in the settlement of Maliy Berdyash and the building of a special comprehensive boarding school in the Ust-Katavskiy urban district of the Chelyabinsk region. The conditions for blasting that provide seismic safety of protected objects are determined.


On the basis of engineering and design surveys of the building, engineering-geological and geophysical studies of the soils of the territory conducted by the article authors, as well as with due regard for the results of studies conducted on this territory by other authors, the features of the foundations, soils of their foundation and engineering-geological conditions of the territory of the Melnikov House are established. It is shown that the Melnikov house is located under complex engineering-geological conditions on the territory of high geological risk, in the zone of influence of tectonic disturbance. To the North of the area there is a zone of intersection of the observed disturbance with a larger disturbance that can have an impact on geological processes. To the North-East of the site of the Melnikov House, a sharp immersion of the roof of carbon deposits was revealed. It promotes groundwater seepage into limestone of the carbonate strata from overlying water-bearing sands and activation of processes of suffusion removal and sinkhole phenomena of the soil. The surveyed area is assessed as potentially karst-hazardous and adjacent to it from the North-East territory as karst-dangerous. In this regard any construction on the adjacent territory can provoke activation of sinkhole phenomena on the surface. The foundations of the building are basically in working condition. Existing defects can be eliminated during repair. The foundation soils mainly have sufficient bearing capacity. Areas of the base with bulk soil can be reinforced. However, when developing a project for the reconstruction of the building and its territory, it should be taken into account that the design of the Melnikov House does not provide for its operation on the loads at the formation of sinkholes.


2012 ◽  
Vol 57 (2) ◽  
pp. 363-373
Author(s):  
Jan Macuda

Abstract In Poland all lignite mines are dewatered with the use of large-diameter wells. Drilling of such wells is inefficient owing to the presence of loose Quaternary and Tertiary material and considerable dewatering of rock mass within the open pit area. Difficult geological conditions significantly elongate the time in which large-diameter dewatering wells are drilled, and various drilling complications and break-downs related to the caving may occur. Obtaining higher drilling rates in large-diameter wells can be achieved only when new cutter bits designs are worked out and rock drillability tests performed for optimum mechanical parameters of drilling technology. Those tests were performed for a bit ø 1.16 m in separated macroscopically homogeneous layers of similar drillability. Depending on the designed thickness of the drilled layer, there were determined measurement sections from 0.2 to 1.0 m long, and each of the sections was drilled at constant rotary speed and weight on bit values. Prior to drillability tests, accounting for the technical characteristic of the rig and strength of the string and the cutter bit, there were established limitations for mechanical parameters of drilling technology: P ∈ (Pmin; Pmax) n ∈ (nmin; nmax) where: Pmin; Pmax - lowest and highest values of weight on bit, nmin; nmax - lowest and highest values of rotary speed of bit, For finding the dependence of the rate of penetration on weight on bit and rotary speed of bit various regression models have been analyzed. The most satisfactory results were obtained for the exponential model illustrating the influence of weight on bit and rotary speed of bit on drilling rate. The regression coefficients and statistical parameters prove the good fit of the model to measurement data, presented in tables 4-6. The average drilling rate for a cutter bit with profiled wings has been described with the form: Vśr= Z ·Pa· nb where: Vśr- average drilling rate, Z - drillability coefficient, P - weight on bit, n - rotary speed of bit, a - coefficient of influence of weight on bit on drilling rate, b - coefficient of influence of rotary speed of bit on drilling rate. Industrial tests were performed for assessing the efficiency of drilling of large-diameter wells with a cutter bit having profiled wings ø 1.16 m according to elaborated model of average rate of drilling. The obtained values of average rate of drilling during industrial tests ranged from 8.33×10-4 to 1.94×10-3 m/s and were higher than the ones obtained so far, i.e. from 181.21 to 262.11%.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1394-1397
Author(s):  
Guang Chun Fei ◽  
Yi Fan Yu ◽  
Ke Qiang Hua

The Dongzhongla Pb-Zn deposit, a newly-discovered medium-sized deposit, is located in the north margin of the eastern Gangdese, central Lhasa block. Based on the analysis of the ore-forming geological conditions in this deposit, sulfur isotope of this deposit were analyzed, and S isotopic equilibrium temperature of mineral pairs (sphalerite and galena) were calculated. This study has shown that the sulfur isotopic equilibrium temperature of sphalerite and galena in Dongzhongla Pb-Zn deposit ranged from 185℃ to 296℃. It indicated that the equilibrium temperature decreased gradually from the skarn stage to sulfide stage. The equilibrium temperature can be used as the reference of metallogenic temperature for Dongzhongla Pb-Zn deposit. DongzhongLa deposit is the typical type of skarn Lead-zinc deposit. East of the Dongzhongla mining area is the priority exploration area.


2018 ◽  
Vol 41 ◽  
pp. 01007
Author(s):  
Yuriy Kutepov ◽  
Aleksandr Mironov ◽  
Maksim Sablin ◽  
Elena Borger

This article considers mining and geological conditions of the site “Blagodatny” of the mine named after A.D. Ruban located underneaththe old open pit coal mine and the hydraulic-mine dump. The potentially dangerous zones in the undermined rock mass have been identified based onthe conditions of formation of water inflow into mine workings. Safe depthof coal seams mining has been calculated depending on the type of water body – the hydraulic-mine dump.


Sign in / Sign up

Export Citation Format

Share Document