SPECTRAL TRANSMISSION AND SCATTERING CHARACTERISTICS OF HUMAN SKIN

2021 ◽  
Author(s):  
Y. Akizuki ◽  
M. Osumi

It is necessary for making the real appearance of human skin sample to deal with not only the spectral reflectance characteristics but also the multi-layer structure and translucency. This paper reported the measurement and analysis of the spectral transmitted and scattering light characteristics. For five subjects, the maximum of transmitted light intensity was resulted at 700 nm near the light source, and decreased with decreasing wavelength. Longer the wavelength, longer the distance which the transmitted light intensity was downing to zero. we defined the average attenuation ratio per unit transmitted light intensity which had the calculation range from 3.5 mm from the light source to the distance that the variation ratio of the transmitted light intensity per unit distance was converged to zero. All subjects’ results showed the peak of the average attenuation ratio at 700 nm and the value were almost 0.5. And they decreased with decreasing wavelength.

2020 ◽  
Vol 16 (1) ◽  
pp. 9-13
Author(s):  
İ. Ö. Çolak ◽  
M. Erol

This work provides an approach for simplifying and teaching of the confusing topic of Polarisation of light and relating Malus’s Law. Teaching Polarisation and the Malus’s Law are modestly achieved by means of smartphones with a convenient light meter application. The apparatus is designed so that the polarizer, the analyser, the laser light source and the smartphone are precisely aligned on a rail. During the performance, the angle of the analyser is basically varied with respect to the polariser and the transmitted light intensity is measured by the light meter application. The results clearly show that the transmitted light intensity is directly proportional to the squared polarization angle. The approach surely provides accessibility for physics teachers and would help students to learn and internalize Polarisation and relating Malus’s Law in a better manner.


2018 ◽  
Vol 32 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Kenta Matsumura ◽  
Koichi Shimizu ◽  
Peter Rolfe ◽  
Masanori Kakimoto ◽  
Takehiro Yamakoshi

Abstract. Pulse volume (PV) and its related measures, such as modified normalized pulse volume (mNPV), direct-current component (DC), and pulse rate (PR), derived from the finger-photoplethysmogram (FPPG), are useful psychophysiological measures. Although considerable uncertainties exist in finger-photoplethysmography, little is known about the extent of the adverse effects on the measures. In this study, we therefore examined the inter-method reliability of each index across sensor positions and light intensities, which are major disturbance factors of FPPG. From the tips of the index fingers of 12 participants in a resting state, three simultaneous FPPGs having overlapping optical paths were recorded, with their light intensity being changed in three steps. The analysis revealed that the minimum values of three coefficients of Cronbach’s α for ln PV, ln mNPV, ln DC, and PR across positions were .948, .850, .922, and 1.000, respectively, and that those across intensities were .774, .985, .485, and .998, respectively. These findings suggest that ln mNPV and PR can be used for psychophysiological studies irrespective of minor differences in sensor attachment positions and light source intensity, whereas and ln DC can also be used for such studies but under the condition of light intensity being fixed.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Nils Schuergers ◽  
Tchern Lenn ◽  
Ronald Kampmann ◽  
Markus V Meissner ◽  
Tiago Esteves ◽  
...  

Bacterial phototaxis was first recognized over a century ago, but the method by which such small cells can sense the direction of illumination has remained puzzling. The unicellular cyanobacterium Synechocystis sp. PCC 6803 moves with Type IV pili and measures light intensity and color with a range of photoreceptors. Here, we show that individual Synechocystis cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We show that directional light sensing is possible because Synechocystis cells act as spherical microlenses, allowing the cell to see a light source and move towards it. A high-resolution image of the light source is focused on the edge of the cell opposite to the source, triggering movement away from the focused spot. Spherical cyanobacteria are probably the world’s smallest and oldest example of a camera eye.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5450 ◽  
Author(s):  
Wenjie Wang ◽  
Bo Zhang ◽  
Lu Xiao ◽  
Wei Zhou ◽  
Huimei Wang ◽  
...  

Background Rapid urbanization in semi-arid regions necessitates greater cooling, humidifying, and shading services from urban trees, but maximizing these services requires an exact understanding of their association with forest characteristics and background street and weather conditions. Methods Here, horizontal and vertical air cooling, soil cooling, shading, and humidifying effects were measured for 605 trees from 152 plots in Changchun. Additionally, weather conditions (Tair, relative humidity, and light intensity), forest characteristics (tree height, diameter at breast height (DBH), under-branch height, canopy size, tree density, and taxonomic family of trees) and background conditions (percentage of building, road, green space, water, and building height, building distance to measured trees) were determined for three urban-rural gradients for ring road development, urban settlement history, and forest types. Multiple analysis of variance and regression analysis were used to find the urban-rural changes, while redundancy ordination and variation partitioning were used for decoupling the complex associations among microclimate regulations, forest characteristics, background street and weather conditions. Results Our results show that horizontal cooling and humidifying differences between canopy shade and full sunshine were <4.5 °C and <9.4%, respectively; while vertical canopy cooling was 1.4 °C, and soil cooling was observed in most cases (peak at 1.4 °C). Pooled urban-rural data analysis showed non-monological changes in all microclimate-regulating parameters, except for a linear increase in light interception by the canopy (r2 = 0.45) from urban center to rural regions. Together with the microclimate regulating trends, linear increases were observed in tree density, Salicaceae percentage, Tair, light intensity outside forests, tree distance to surrounding buildings, and greenspace percentage. Redundancy ordination demonstrated that weather differences were mainly responsible for the microclimate regulation variation we observed (unique explanatory power, 65.4%), as well as background conditions (12.1%), and forest characteristics (7.7%). Discussion In general, horizontal cooling, shading, and humidifying effects were stronger in dry, hot, and sunny weather. The effects were stronger in areas with more buildings of relatively lower height, a higher abundance of Ulmaceae, and a lower percentage of Leguminosae and Betulaceae. Larger trees were usually associated with a larger cooling area (a smaller difference per one unit distance from the measured tree). Given uncontrollable weather conditions, our findings highlighted street canyon and forest characteristics that are important in urban microclimate regulation. This paper provides a management strategy for maximizing microclimate regulation using trees, and methodologically supports the uncoupling of the complex association of microclimate regulations in fast urbanization regions.


1969 ◽  
Vol 22 (1) ◽  
pp. 53 ◽  
Author(s):  
D Aspinall

The acceleration of flowering in barley due to the inclusion of incandescent illumination in the light source has been shown to be due to the far�red content of the light. A linear relationship between floral development and intensity of far�red light in a 16�hr photoperiod has been established with the cultivar CI5611. Barley appears to be relatively unresponsive to blue light, however.


1955 ◽  
Vol 8 (3) ◽  
pp. 297-299 ◽  
Author(s):  
John A. Jacquez ◽  
John Huss ◽  
Wayne McKeehan ◽  
James M. Dimitroff ◽  
Hans F. Kuppenheim

2020 ◽  
Author(s):  
Jingwei Liu ◽  
Xin Li ◽  
Yiming Yang ◽  
Haichao Wang ◽  
Cailing Kuang ◽  
...  

&lt;p&gt;Formaldehyde (HCHO) is the most abundant atmospheric carbonyl compound and plays an important role in the troposphere. However, HCHO detection via traditional incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) is limited by short optical path lengths and weak light intensity. Thus, a new light-emitting diode (LED)-based IBBCEAS was developed herein to measure HCHO in ambient air. Two LEDs (325 and 340 nm) coupled by a Y-type fiber bundle were used as an IBBCEAS light source, which provided both high light intensity and a wide spectral fitting range. The reflectivity of the two cavity mirrors used herein was 0.99965 (1 &amp;#8211; reflectivity = 350 ppm loss) at 350 nm, which corresponded with an effective optical path length of 2.15 km within a 0.84 m cavity. At an integration time of 30 s, the measurement precision (1&amp;#963;) for HCHO was 380 parts per trillion volume (pptv) and the corresponding uncertainty was 8.3%. The instrument was successfully deployed for the first time in a field campaign and delivered results that correlated well with those of a commercial wet-chemical instrument based on Hantzsch fluorimetry (R&lt;sup&gt;2&lt;/sup&gt; = 0.769). The combined light source based on Y-type fiber bundle overcomes the difficulty of measuring ambient HCHO via IBBCEAS in near-ultraviolet range, which may extend IBBCEAS technology to measure other atmospheric trace gases with high precision.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document