scholarly journals Investigations on Three-phase Grid-Connected Inverter using PWM Controllers

2020 ◽  
Vol 13 (5) ◽  
pp. 176-182
Author(s):  
D. Manikanta Swamy ◽  
M. Venkatesan ◽  
M. Subbarao

In recent years, a Multilevel Inverter (MLI) topology is highly preferred in the various renewable energy applications for converting power due to their merits. In this paper, a three-phase inverter has been designed for grid-connected applications using Proportional Integral (PI) current controller scheme. To generate a sequence, the Level shift (LS) and Phase Shift (PS) Pulse Width Modulation (PWM) methodologies are adapted. This topology has been designed with two stages: the DC-DC conversion stage and DC-AC conversion stage. The DC-DC conversion stage is used to enrich input DC voltage which is obtained from the solar PV array. The PI current controller has been designed to regulate the grid current with park transformation. The performances of the inverter have been examined in terms of Total Harmonic Distortion (THD) using different PWM techniques and also investigated with existing research works. The developed results are verified using MATLAB/ Simulink.

2013 ◽  
Vol 732-733 ◽  
pp. 1261-1264
Author(s):  
Zhi Lei Yao ◽  
Lan Xiao ◽  
Jing Xu

An improved control strategy for three-phase grid-connected inverters with space vector pulse width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d-and q-axes grid currents is interacted in the traditional control method, and the waveform quality of the grid current is poor. As the reference output voltage cannot directly reflect the change of the reference grid current with the traditional control strategy, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d-and q-axes grid currents in the decoupled components of the grid current controller are substituted by the d-and q-axes reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results show that the grid-connected inverter with the improved control strategy has high waveform quality of the grid current and fast dynamic response.


Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anbarasan P. ◽  
Krishnakumar V. ◽  
Ramkumar S. ◽  
Venkatesan S.

Purpose This paper aims to propose a new MLI topology with reduced number of switches for photovoltaic applications. Multilevel inverters (MLIs) have been found to be prospective for renewable energy applications like photovoltaic cell, as they produce output voltage from numerous separate DC sources or capacitor banks with reduced total harmonic distortion (THD) because of a staircase like waveform. However, they endure from serious setbacks including larger number of capacitors, isolated DC sources, associated gate drivers and increased control difficulty for higher number of voltage levels. Design/methodology/approach This paper proposes a new three-phase multilevel DC-link inverter topology overpowering the previously mentioned problems. The proposed topology is designed for five and seven levels in Matlab/Simulink with gating pulse using multicarrier pulse width modulation. The hardware results are shown for a five-level MLI to witness the viability of the proposed MLI for medium voltage applications. Findings The comparison of the proposed topology with other conventional and other topologies in terms of switch count, DC sources and power loss has been made in this paper. The reduction of switches in proposed topology results in reduced power loss. The simulation and hardware show that the output voltage yields a very close sinusoidal voltage and lesser THD. Originality/value The proposed topology can be extended for any level of output voltage which is helpful for sustainable source application.


Author(s):  
Nguyen Duc Minh ◽  
Bui Van Huy ◽  
Ngo Thi Quan ◽  
Nguyen Quang Ninh ◽  
Trinh Trong Chuong

This paper presents the design and simulation of three phase grid-connected inverter for photovoltaic systems with power ratings up to 5 kW. In this research, the application of Space Vector Pulse Width Modulation (SVPWM) technique for inverter is explored. With the use of SVPWM inverter, synchronization between the inverter and electrical grid follows the Phaselocked Loop (PLL) algorithm. The proposed design is simulated and validated by experimental results.


2021 ◽  
Author(s):  
Christel E. G. Ogoulola ◽  
Angelo J. J. Rezek ◽  
Robson B. Gonzatti ◽  
Vinicius Z. Silva ◽  
Marcos L. Ramos ◽  
...  

This paper deals with the theoretical development, analysis, and simulation of the new topology of three-phase NPC (Neural Point Clamped) converter. The proposed 6-kW three-phase converter is connected to a three-phase electrical network and due to its bidirectional characteristics can either send energy to the grid or receive it from the grid. The classic strategy of vectorial control at the DQ synchronous reference frame, along with a simple algorithm for Unit Vector Generation (UVG), have been employed to control the line currents in the grid and the DC-bus voltage, thus substituting the PLL (Phase Locked Loop). A PWM (Pulse Width Modulation) strategy is presented in the form of an analog circuit and used for switching the semiconductors in the converter. The obtained results were verified using Matlab/Simulink software. The proposed converter has five voltage levels at the output for each phase and proven more advantageous than the conventional NPC. In addition, it was obtained a better harmonic content in the grid currents because there is very low Total Harmonic Distortion (THD) both when acting as a rectifier and as an inverter.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 234 ◽  
Author(s):  
Ahmet Aksoz ◽  
Yipeng Song ◽  
Ali Saygin ◽  
Frede Blaabjerg ◽  
Pooya Davari

In this paper, a virtual positive impedance (VPI) based active damping control for a slim DC-link motor drive with 24 section space vector pulse width modulation (SVPWM) is proposed. Utilizing the proposed control and modulation strategy can improve the input of current total harmonic distortion (THD) while maintaining the cogging torque of the motor. The proposed system is expected to reduce the front-end current THD according to international standards, as per IEC 61000 and IEEE-519. It is also expected to achieve lower cost, longer lifetime, and fewer losses. A permanent magnet synchronous motor (PMSM) is fed by the inverter, which adopts the 24 section SVPWM technique. The VPI based active damping control for the slim DC-link drive with/without the 24 section SVPWM are compared to confirm the performance of the proposed method. The simulation results based on MATLAB are provided to validate the proposed control strategy.


Author(s):  
Olwi A. Elkholi ◽  
Mohamed A. Enany ◽  
Ahmed F. Abdo ◽  
Mahmoud Eid

<p class="Abstract">Due to their better DC bus utilization and easier digital realization, Space Vector Pulse Width Modulation (SVPWM) scheme is the most widely used PWM scheme. Also two level inverter is the traditional frequency converter because it has fewer components and is lower complex to control, but on the other hand it generates higher harmonic distortion. This paper presents the realization of novel SVPWM approaches applied to the three phase induction motor drives. Specifically various schemes are based on using more combinations of step operation in each cycle to approximate the reference vector, such as 24 and 48 step operations in each cycle. The basic principle of conventional SVPWM with different modulation index M is presented. The switching sequences of new approaches are described. The modulation signals waveforms, DC bus voltage utilization, De-rated motor torque, standard error of average torque, voltage and current harmonic of new approaches are analyzed by the MATLAB/SIMULINK software. The results confirms that 48 step SVPWM approach is the best compared to other approaches.</p>


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 856 ◽  
Author(s):  
Hani Albalawi ◽  
Sherif A. Zaid

Grid-connected photovoltaic (PV) systems are now a common part of the modern power network. A recent development in the topology of these systems is the use of transformerless inverters. Although they are compact, cheap, and efficient, transformerless inverters suffer from chronic leakage current. Various researches have been directed toward evolving their performance and diminishing leakage current. This paper introduces the application of a model predictive control (MPC) algorithm to govern and improve the performance of a grid-tied neutral-point-clamped (NPC) 3-φ transformerless inverter powered by a PV panel. The transformerless inverter was linked to the grid via an inductor/capacitor (LC) filter. The filter elements, as well as the internal impedance of the grid, were considered in the system model. The discrete model of the proposed system was determined, and the algorithm of the MPC controller was established. Matlab’s simulations for the proposed system, controlled by the MPC and the ordinary proportional–integral (PI) current controller with sinusoidal pulse width modulation (SPWM), were carried out. The simulation results showed that the MPC controller had the best performance for earth leakage current, total harmonic distortion (THD), and the grid current spectrum. Also, the efficiency of the system using the MPC was improved compared to that using a PI current controller with SPW modulation.


Author(s):  
M Vijayakumar ◽  
S. M. Ramesh

This paper introduces a new premium multilevel inverter (MLI) topology with cascaded H-Bridge and series-parallel connected switches to synthesize the fundamental sine wave with various levels of voltage. The component count is decreased by reducing the number of power switching devices, optoisolators, voltage gate drivers, snubber and filter circuits. The combination of two power switches and a separated DC (SDC) source is called an SDC module. Five SDC modules are required for a 63-level MLI and six SDC modules are required for a 127-level MLI. In this paper, both a 63-level and a 127-level filter-less single-phase MLIs are deliberated. The switches are controlled by employing a newer pulse width modulation (PWM) technique called periodic reduced digital carrier level shift PWM (PRDCLSPWM). As the number of levels increases to a greater extent, the total harmonic distortion diminishes without the need of filter circuit and the performance level also increases. Comparative analysis of proposed 63-level and 127-level MLIs topology with the conventional and modern topologies has been presented in terms of power switches, gate driver circuit requirement, DC voltage sources and THD limits. PRDCLSPWM scheme is derived and analyzed for the proposed 63-level and 127-level MLIs to eliminate low-order and high-order harmonics. Moreover, the performance of the proposed modulation scheme is compared with the most commonly used schemes. The modeling and simulation are done with MATLAB/SIMULINK 2016a.


2013 ◽  
Vol 768 ◽  
pp. 84-89 ◽  
Author(s):  
R. Abirami ◽  
V. Jaikrishna ◽  
N. Chellammal ◽  
Dash Sekar Subhransu ◽  
V. Velmurugan

In this paper, a hybrid multilevel inverter (MLI) with reduced number of components is modelled by deriving its source from solar PV array. The power switches of this MLI are controlled by utilizing the pulses derived by comparing the reference and carrier signal. The reference signal for the modulation process is based on 60 degree PWM. The carriers considered for the modulation process are triangular carrier wave and inverted sine carrier wave arranged in phase Disposition (PD) multicarrier method. The output voltage waveform of this hybrid MLI under consideration is analyzed with different performance parameters like Total Harmonic Distortion (THD), RMS Voltage, DC utilization Rate and harmonic spectrum. The simulation results show that the inverted sine based PD technique is yielding better performance than that of other technique. The above mentioned are examined with the help of MATLAB / SIMULINK.


2013 ◽  
Vol 415 ◽  
pp. 81-88
Author(s):  
Yang Xue ◽  
Yuan Li ◽  
Jia Dong Zhang ◽  
Jing Lin ◽  
Jun Tao Yang

The space vector pulse width modulation (SVPWM), as a new kind of vector control technique, has the advantages of high voltage utilization, less distorted output, simple control method, etc. In this paper, the control technique is applied to three-phase photovoltaic (PV) grid-connected inverter system. It uses double loop control method combined with PI control technique. The simulation model of PV grid-connected inverter system is established in Matlab/Simulink. The simulation results show that the application of SVPWM technique effectively improves the dynamic performance of PV grid inverter system and the THD of grid-connected current is low.


Sign in / Sign up

Export Citation Format

Share Document