scholarly journals Study of the optical proprieties of copper oxide nanoparticles prepared by PLD method

2019 ◽  
Vol 23 (10) ◽  
pp. 72
Author(s):  
Rasha H. Ahmed1 ◽  
, Abdul Majeed E. Ibrahim1 ◽  
Kadhim A. Aadem2

Nano CuO thin films on glass substrates were prepared at a constant temperature of (300°C), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength and five deposition energies (400, 500, 600, 700 and 800 mJ) with fixed pulses (300 pulse and 6 Hz) was used on the properties of CuO films. CuO nanoparticles were deposited on glass substrates to study optical properties and formed thin films of thickness (200 nm).CuO thin flims were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline CuO prepared at laser energies , includes optical transmittance and absorption measurements and energy gap of these films.   http://dx.doi.org/10.25130/tjps.23.2018.172    

2020 ◽  
pp. 333-340
Author(s):  
Donia Yas Khudair ◽  
Ramiz Ahmed Al Ansari

In this work, SnO2 and (SnO2)1-x(ZnO)x composite thin films with different ZnO atomic ratios (x=0, 5, 10, 15 and 20%) were prepared by pulsed laser deposition technique on clean glass substrates at room temperature without any treatment. The deposited thin films were characterized by x-ray diffraction atomic force microscope  and UV-visible spectrophotometer to study the effect of the ZnO atomic ratio on their structural, morphological and optical properties. It was found that the crystallinety and the crystalline size vary according to ZnO atomic ratio. The surface appeared as longitudinal structures which was convert to spherical shapes with increasing ZnO atomic ratio. The optical transmission and energy gap increased with increasing ZnO atomic ratio. 


2014 ◽  
Vol 606 ◽  
pp. 15-18
Author(s):  
Falah I. Mustafa ◽  
Mooroj Ali

InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~500nm by thermal evaporation technique. The X-Ray diffraction analysis showed that both the as-deposited films In2Se3and InSe (x= 0.4 and 0.5) are amorphous in nature while the as-deposited film In3Se2is polycrystalline and the values of energy gap are Eg=1.44eV for In2Se3, Eg=1.16eV for InSe and Eg=0.78eV for In3Se2. The same technique used with insert Argon gas at pressure 0.1 mbar where InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~100nm. The X-Ray diffraction analysis showed that the as-deposited films In2Se3are amorphous in nature while the as-deposited film InSe and In3Se2are Nanocrystalline with grain size 33nm and 55nm respectively and the values of energy gap are Eg=1.55eV for InSe and Eg=1.28eV for In3Se2. The energy gap of InSe thin films increase with Argon gas assist and phases changes from amorphous and polycrystalline to nanostructure material by thermal vacuum deposition technique.


2020 ◽  
Vol 307 ◽  
pp. 01033
Author(s):  
Asmaa Mrigal ◽  
Lahocine El Gana ◽  
Mouhamed Addou ◽  
Khadija Bahedi ◽  
Rajae Temsamani ◽  
...  

In this work, the effect of substrate temperature on structural and optical properties of V2O5 thin films has been characterized by X-ray diffraction (XRD); SEM and transmission. The films mince has been prepared by Reactive Chemical Spraying technology in Liquid Phase (RCSLP) on glass substrates preheated at (350, 400, 450 and 500 °C). The X-ray diffraction analysis confirms that all layers are polycrystalline, and the preferred orientation of V2O5 is the (001) plane. The morphology of V2O5 thin films are porous nature and their particle’s shape is three-dimensional. The transmittance and absorbance of thin film were measured from which the optical constants (Energy gap, Refractive index, Absorption coefficient, Extinction coefficient and Optical dielectric constant) were determined.


2018 ◽  
Vol 24 (8) ◽  
pp. 5700-5702
Author(s):  
T. C. M Santhosh ◽  
Kasturi V Bangera ◽  
G. K Shivakumar

CdSe thin films have been deposited on glass substrates at 453 K and subjected to post-deposition annealing. The effect of annealing on the properties of thermally evaporated CdSe thin films has been studied in detail. Structural and compositional studies have been carried out using X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDX) techniques. It is observed that as-deposited CdSe as well as annealed CdSe thin films exhibits hexagonal structure. The grain size was found to increase marginally with an increase in the annealing duration. The optical band gap of the grown films was evaluated from absorption measurements found to be 1.67 eV. An improvement in photoconductivity has been observed for annealed films.


2019 ◽  
Vol 12 (25) ◽  
pp. 138-147
Author(s):  
Haidar Jwad Abdul-Ameer Al-Rehamey

Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the samples was determined from optical trasmittance spectra. It is observed that the direct band gap energy for as deposited and annealed films are (2.55, 2.45) eV, respectively. The effect of annealing at 250 oC for 1hr in air on optical and photoconductivity of films under various intensity of illuminations (43.81 and 115.12) mW/cm2 was studied. The dark and photocurrents of the annealed films were found to be greater than that of as deposited.


2012 ◽  
Vol 472-475 ◽  
pp. 1572-1576 ◽  
Author(s):  
Jie Liao ◽  
Hai Fang Zhou ◽  
Shu Ying Cheng

ZnS thin films were deposited on glass substrates using chemical bath deposition. The zinc sulfate and thiourea were used as precursors along with a stable complexing agent of sodium citrate in ammonia/ammonium chloride (pH=10.5) buffer solution. The ratio of Zn and complexing agent was changed from 6:1 to 1:1 by varying concentrations of the complexing agent. X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis spectrophotometer were used to investigate the structure, micrograph and optical characteristics of the ZnS thin films respectively. The concentration of sodium citrate has an effect on the crystalline size and crystallization. For the as-deposited thin films, the values of transmittances and Eg are about 85% and 3.8 eV respectively. However, they are decreased to 75% and 3.4 eV respectively after annealing. In addition, the concentration of the complexing agent has no remarkable influence on both the transmittance and the energy gap. The results show that the ZnS thin films with resistivity of 4.34×104 Ωcm are suitable for optoelectronic applications.


2010 ◽  
Vol 434-435 ◽  
pp. 506-509
Author(s):  
Chia Cheng Huang ◽  
Fang Hsing Wang ◽  
Cheng Fu Yang ◽  
Hong Hsin Huang ◽  
Cheng Yi Chen ◽  
...  

W-TiO2 (W, tungsten) dual-layer thin films are deposited by RF magnetron sputtering onto glass substrates and annealed at 150oC~400oC for 4hrs. The crystal structure, morphology, and trans- mittance of annealed W-TiO2 dual-layer thin films are investigated by X-ray diffraction, FESEM, and UV-Vis spectrometer, respectively. The annealing temperatures have large effect on the properties of W-TiO2 dual-layer thin films. The band gap energy values of W-TiO2 dual-layer thin films are evaluated from (h)1/2 versus energy plots. The energy gap for un-annealed W-TiO2 dual-layer thin film is 3.16 eV. As the annealing temperature increases from 150oC to 400oC, the energy gap decreases from 3.16 eV to 3.10 eV.


2006 ◽  
Vol 13 (01) ◽  
pp. 87-92 ◽  
Author(s):  
A. ASHOUR

Titanium oxide thin films were prepared by sputtering technique onto glass substrates at room temperature (RT). The structure of the films was confirmed using X-ray diffraction (XRD) and revealed the stoichiometry with an O and Ti ratio of 2. The deposited films at RT were found to be amorphous and the films annealed at 300 and 400°C for 2 h were crystalline with orthorhombic structure. The lattice constants and grain size of the film are calculated. The electrical resistivity was found to depend on the film thickness and decreased with increasing the film thicknesses. The optical constants of the films such as the refractive index, extinction coefficient, and absorption coefficient were also determined using the optical transmittance measurements, and the results were discussed. The optical band gap varies from 3.2 to 3.5 eV as a function of oxygen/argon ratios.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Sign in / Sign up

Export Citation Format

Share Document