Experimental and Numerical Study on the Effect of Strain Hardening Characteristics on Curved Flaring Process of Pure Copper and Brass

2020 ◽  
Vol 27 (4) ◽  
pp. 39-47
Author(s):  
Tahseen Al-Qahwaji ◽  
Yasir Jobory

An experimental and numerical study of tube curved flaring process was conducted to investigate the effect of strain hardening characteristic of material on the process using two metals that differ in strain hardening characteristic which are pure copper and brass (70-30) by using curved dies which have curvature ratio ( ρ rd ) of (ρ rd =6) and (ρ rd =12) and base radius of die (rd=24mm) and (ρ) is the radius of curvature. The experimental part was included experiments on specimens with an outer diameter of (39 mm) and a wall thickness of (2 mm). The expansion process was carried out for different expansion ratios that it was reached to about (32%). The results were showed that the strain hardening exponent of pure Copper more than Brass (70-30) and its value reached (0.54) for pure Copper and (0.49) for Brass (70-30). However, this paper concluded a study of the effect of strain hardening characteristics on the curved flaring process. It was found that the increasing of flaring ratio and relative axial displacement of the die through the specimen are caused increase in the relative forming stress, and its value is significant in expanded tubes with high strain hardening characteristic and it is about (0.77) in Brass and (1.42) in Copper. It also found that a little difference in the deformation of specimens' geometry which means that the deformation is not affected by the strain hardening characteristic and there is no significant difference in strain distribution. The study also included a numerical simulation using the finite element ANSYS program. The results obtained are compared with experimental data and showed good agreement.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Liu ◽  
Zhihuai Huang ◽  
Mi Zhou

Significant difference between predicted and measured installation resistance of stiffened suction caissons was identified due to the existing uncertainty regarding the mobilized soil flow mechanisms. This paper describes an extensive investigation of square stiffened caisson penetration in nonhomogeneous clays undertaken through large deformation FE (LDFE) analysis to identify the soil flow mechanisms around and between lateral ring stiffeners. A detailed parametric study has been carried out, exploring a range of nondimensional parameters related to stiffened caisson geometry, caisson roughness, and soil strength. The LDFE results were compared with centrifuge test data in terms of soil flow mechanisms, with good agreement obtained. Two interesting features of soil flow inside the caisson were observed including soil backflow into the gaps between the embedded stiffeners and soil heaving at the surface. It shows that the cavity depth can reach ∼5 m. Finally, simple expressions were proposed for estimating the critical depths of soil backflow and cavity formation.


Author(s):  
MH Tavajjohi ◽  
M Honarpisheh

In this research, the residual stresses distribution resulting from one of the severe plastic deformation methods called Constrained Groove Pressing in pure copper sheets has been studied experimentally and numerically. For this purpose, after the initial preparation of each sample, the mentioned process is applied to the samples up to three passes. After each pass, the residual stresses in these samples in both directions of their length and width have been measured experimentally. To measure the residual stresses in these samples, the contour method, which is a relatively new, effective, and accurate method in providing a two-dimensional residual stress map, has been used. The results indicate that the residual stresses on the surfaces of the samples are compressive and by moving towards the central layers of them, these stresses are converted into tensile residual stresses. The distribution of residual stresses along the length and width of the samples is reported to be relatively uniform. In another part of this research, numerical simulation of the Constrained Groove Pressing process in ABAQUS finite element software is discussed. In this simulation, Johnson–Cook model is used as a constitutive model. The average error of residual stress distribution between the simulation and contour method was about 18% which shown a good agreement.


2010 ◽  
Vol 146-147 ◽  
pp. 97-100
Author(s):  
Hong Ping Jin ◽  
Wen Yu Yang ◽  
Lin Yan

In this study, we have used the FE method to investigate the effect of in-plane residual stress and strain-hardening exponent on the indenter load, indentation work and residual depth. Based on the reverse analysis, the 304 stainless steel’s residual stress and strain-hardening exponent can be measured fromone simple indentation test by using spherical indenter. The comparison between residual stress or strain-hardening predicted from reverse analysis and the input residual stress or strain-hardening used in numerical indentation experiments shows good agreement.


2002 ◽  
Vol 88 (09) ◽  
pp. 380-386 ◽  
Author(s):  
Dawn Sands ◽  
Andrew Chang ◽  
Claudine Mazurier ◽  
Anthony Hubbard

SummaryAn international study involving 26 laboratories assayed two candidate von Willebrand Factor (VWF) concentrates (B and C) for VWF:Antigen (VWF:Ag), VWF:Ristocetin Cofactor (VWF:RCo) and VWF:Collagen binding (VWF:CB) relative to the 4th International Standard Factor VIII/VWF Plasma (4th IS Plasma) (97/586). Estimates of VWF:Ag showed good agreement between different methods, for both candidates, and the overall combined means were 11.01 IU/ml with inter-laboratory variability (GCV) of 10.9% for candidate B and 14.01 IU/ml (GCV 11.8%) for candidate C. Estimates of VWF:RCo showed no significant difference between methods for both candidates and gave overall means of 9.38 IU/ml (GCV 23.7%) for candidate B and 10.19 IU/ml (GCV 24.4%) for candidate C. Prior to the calibration of the candidates for VWF:CB it was necessary to calibrate the 4th IS Plasma relative to local frozen normal plasma pools; there was good agreement between different collagen reagents and an overall mean of 0.83 IU per ampoule (GCV 11.8%) was assigned. In contrast, estimates of VWF:CB in both candidates showed large differences between collagen reagents with inter-laboratory GCV’s of 40%. Candidate B (00/514) was established as the 1st International Standard von Willebrand Factor Concentrate by the WHO Expert Committee on Biological Standardisation in November 2001 with assigned values for VWF:Ag (11.0 IU/ampoule) and VWF:RCo (9.4 IU/ampoule). Large inter-laboratory variability of estimates precluded the assignment of a value for VWF:CB.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Weiyang Cheng ◽  
Sufang Xue ◽  
Fang Wu ◽  
Xiaowei Song ◽  
Qiang Huang ◽  
...  

Background and Purpose. Recently, several studies indicated the c.14576G>A variant on the ring finger protein 213 (RNF213), a founder variant of moyamoya diseases (MMD), was associated with non-MMD intracranial major artery stenosis/occlusion (non-MMD ICASO). We proposed that RNF213 variant-related ICASO including MMD might be a special entity with its own characteristics based on a genetic background. The aim of the study was to learn the clinical and vascular features of RNF213 variant-related ICASO. Moreover, we tried to explore the clinical significance of a testing variant in ICASO patients in China. Methods. Clinical material and routine image data were collected in 160 Chinese patients with ICASO, including 41 verified MMD and 119 non-MMD. DNA samples were extracted, and the c.14576G>A variant on RNF213 was genotyped. Then, the clinical and vascular features were compared between the patients with and without a relevant variant. Furthermore, the patients with RNF213 mutation were performed with high resolution magnetic resonance imaging (HR-MRI) examination to conclude features of the artery wall. Results. There were 16 (10%) patients (including 9 MMD and 7 non-MMD ICASO) presenting a heterozygous c.14576G>A variant while none of homozygote was found. Compared to the patients without the c.14576G>A variant, the variant group had more female, less symptomatic patients, and more possibility of having collateral vessels in vascular imaging. In the symptomatic subgroup, there is no significant difference in clinical presentation (p>0.05) between two groups. However, RNF213 variant-related ICASO had lower scores in NIHSS (1.0±3.0 vs. 3.9±5.0, p<0.05) but not in mRS. In the symptomatic subgroup, in addition, most of the HR-MRI images of variant ICASO (77.8%, 7 of 9) were characterized by a shrunken outer diameter, concentric thickening vessel wall, and collateral vessel structures on the stenotic portion, which was prone to be diagnosed as HR-MMD (a MMD diagnosis diagnosed by HR-MRI). The rest of the two variants showed a relatively eccentric luminal narrow, normal outer diameter without collateral vessel findings, identified as HR-ICAD (intracranial atherosclerotic disease diagnosed by HR-MRI). Conclusions. Our study demonstrated that the c.14576G>A variant on RNF213 may be a biomarker to good outcome of ICASO in Chinese. The variant-related ICASO was characterized by both features of MMD and ICAD diagnosed by HR-MRI.


2004 ◽  
Vol 126 (2) ◽  
pp. 372-379 ◽  
Author(s):  
J. L. Bucaille ◽  
E. Felder ◽  
G. Hochstetter

An experimental and numerical study of the scratch test on polymers near their surface is presented. The elastoplastic response of three polymers is compared during scratch tests at large deformations: polycarbonate, a thermosetting polymer and a sol-gel hard coating composed of a hybrid matrix (thermosetting polymer-mineral) reinforced with oxide nanoparticles. The experiments were performed using a nanoindenter with a conical diamond tip having an included angle of 30 deg and a spherical radius of 600 nm. The observations obtained revealed that thermosetting polymers have a larger elastic recovery and a higher hardness than polycarbonate. The origin of this difference in scratch resistance was investigated with numerical modelling of the scratch test in three dimensions. Starting from results obtained by Bucaille (J. Mat. Sci., 37, pp. 3999–4011, 2002) using an inverse analysis of the indentation test, the mechanical behavior of polymers is modeled with Young’s modulus for the elastic part and with the G’sell-Jonas’ law with an exponential strain hardening for the viscoplastic part. The strain hardening coefficient is the main characteristic parameter differentiating the three studied polymers. Its value is equal to 0.5, 4.5, and 35, for polycarbonate, the thermosetting polymer and the reinforced thermosetting polymer, respectively. Firstly, simulations reveals that plastic strains are higher in scratch tests than in indentation tests, and that the magnitude of the plastic strains decreases as the strain hardening increases. For scratching on polycarbonate and for a penetration depth of 0.5 μm of the indenter mentioned above, the representative strain is equal to 124%. Secondly, in agreement with experimental results, numerical modeling shows that an increase in the strain hardening coefficient reduces the penetration depth of the indenter into the material and decreases the depth of the residual groove, which means an improvement in the scratch resistance.


1998 ◽  
Vol 38 (9) ◽  
pp. 1469-1474 ◽  
Author(s):  
S. Nagarjuna ◽  
M. Srinivas ◽  
K. Balasubramanian ◽  
D.S. Sarma

2018 ◽  
Vol 9 ◽  
pp. 1220-1227 ◽  
Author(s):  
Caspar Haverkamp ◽  
George Sarau ◽  
Mikhail N Polyakov ◽  
Ivo Utke ◽  
Marcos V Puydinger dos Santos ◽  
...  

A fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that pure copper nanocrystals with sizes of up to around 15 nm were dispersed inside the carbonaceous matrix. Raman investigations revealed a high degree of amorphization of the carbonaceous matrix and showed hints for partial copper oxidation taking place selectively on the surfaces of the deposits. Optical transmission/reflection measurements of deposited pads showed a dielectric behavior of the material in the optical spectral range. The general behavior of the permittivity could be described by applying the Maxwell–Garnett mixing model to amorphous carbon and copper. The dielectric function measured from deposited pads was used to simulate the optical response of tip arrays fabricated out of the same precursor and showed good agreement with measurements. This paves the way for future plasmonic applications with copper-FEBID.


Sign in / Sign up

Export Citation Format

Share Document