scholarly journals Numerical Study on the Behavior of Square Stiffened Caissons Penetrating into Normally Consolidated Clay

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Liu ◽  
Zhihuai Huang ◽  
Mi Zhou

Significant difference between predicted and measured installation resistance of stiffened suction caissons was identified due to the existing uncertainty regarding the mobilized soil flow mechanisms. This paper describes an extensive investigation of square stiffened caisson penetration in nonhomogeneous clays undertaken through large deformation FE (LDFE) analysis to identify the soil flow mechanisms around and between lateral ring stiffeners. A detailed parametric study has been carried out, exploring a range of nondimensional parameters related to stiffened caisson geometry, caisson roughness, and soil strength. The LDFE results were compared with centrifuge test data in terms of soil flow mechanisms, with good agreement obtained. Two interesting features of soil flow inside the caisson were observed including soil backflow into the gaps between the embedded stiffeners and soil heaving at the surface. It shows that the cavity depth can reach ∼5 m. Finally, simple expressions were proposed for estimating the critical depths of soil backflow and cavity formation.

2020 ◽  
Vol 27 (4) ◽  
pp. 39-47
Author(s):  
Tahseen Al-Qahwaji ◽  
Yasir Jobory

An experimental and numerical study of tube curved flaring process was conducted to investigate the effect of strain hardening characteristic of material on the process using two metals that differ in strain hardening characteristic which are pure copper and brass (70-30) by using curved dies which have curvature ratio ( ρ rd ) of (ρ rd =6) and (ρ rd =12) and base radius of die (rd=24mm) and (ρ) is the radius of curvature. The experimental part was included experiments on specimens with an outer diameter of (39 mm) and a wall thickness of (2 mm). The expansion process was carried out for different expansion ratios that it was reached to about (32%). The results were showed that the strain hardening exponent of pure Copper more than Brass (70-30) and its value reached (0.54) for pure Copper and (0.49) for Brass (70-30). However, this paper concluded a study of the effect of strain hardening characteristics on the curved flaring process. It was found that the increasing of flaring ratio and relative axial displacement of the die through the specimen are caused increase in the relative forming stress, and its value is significant in expanded tubes with high strain hardening characteristic and it is about (0.77) in Brass and (1.42) in Copper. It also found that a little difference in the deformation of specimens' geometry which means that the deformation is not affected by the strain hardening characteristic and there is no significant difference in strain distribution. The study also included a numerical simulation using the finite element ANSYS program. The results obtained are compared with experimental data and showed good agreement.


2012 ◽  
Vol 49 (4) ◽  
pp. 442-459 ◽  
Author(s):  
M.S. Hossain ◽  
B.M. Lehane ◽  
Y. Hu ◽  
Y. Gao

Structural stiffeners placed inside caissons have created significant uncertainty regarding soil flow mechanisms, side friction, and end bearing, and consequently in the prediction of the underpressure required for installation. This paper describes centrifuge modelling of the penetration of stiffened skirts in overconsolidated clay, identifying the soil flow mechanisms around and between stiffeners and the penetration resistance. The effects of stiffener width and spacing as well as soil strength ratio are discussed. The present guidelines for predicting the point of soil backflow in the gap that forms between the stiffeners are shown to be invalid and a new expression, based on a stability factor (su/γ′B, where su and γ′ are the undrained shear strength and effective unit weight of the soil, respectively, and B is the combined width of the skirt and stiffener close to the caisson tip) is proposed. End bearing at the skirt tip and base stiffener are seen to dominate installation resistance. The normalized installation resistance stabilizes at a value of ∼17.5 at deep penetrations and is shown to be independent of whether the cavity between the stiffeners remains open or is backfilled with a soil–water mixture. This factor of 17.5 is shown to be in good agreement with reported field data and centrifuge test data and hence may be used to obtain a first-order estimate of the installation resistance of a caisson with stiffeners.


2002 ◽  
Vol 88 (09) ◽  
pp. 380-386 ◽  
Author(s):  
Dawn Sands ◽  
Andrew Chang ◽  
Claudine Mazurier ◽  
Anthony Hubbard

SummaryAn international study involving 26 laboratories assayed two candidate von Willebrand Factor (VWF) concentrates (B and C) for VWF:Antigen (VWF:Ag), VWF:Ristocetin Cofactor (VWF:RCo) and VWF:Collagen binding (VWF:CB) relative to the 4th International Standard Factor VIII/VWF Plasma (4th IS Plasma) (97/586). Estimates of VWF:Ag showed good agreement between different methods, for both candidates, and the overall combined means were 11.01 IU/ml with inter-laboratory variability (GCV) of 10.9% for candidate B and 14.01 IU/ml (GCV 11.8%) for candidate C. Estimates of VWF:RCo showed no significant difference between methods for both candidates and gave overall means of 9.38 IU/ml (GCV 23.7%) for candidate B and 10.19 IU/ml (GCV 24.4%) for candidate C. Prior to the calibration of the candidates for VWF:CB it was necessary to calibrate the 4th IS Plasma relative to local frozen normal plasma pools; there was good agreement between different collagen reagents and an overall mean of 0.83 IU per ampoule (GCV 11.8%) was assigned. In contrast, estimates of VWF:CB in both candidates showed large differences between collagen reagents with inter-laboratory GCV’s of 40%. Candidate B (00/514) was established as the 1st International Standard von Willebrand Factor Concentrate by the WHO Expert Committee on Biological Standardisation in November 2001 with assigned values for VWF:Ag (11.0 IU/ampoule) and VWF:RCo (9.4 IU/ampoule). Large inter-laboratory variability of estimates precluded the assignment of a value for VWF:CB.


Author(s):  
Mosbah Ben Said ◽  
Ahmed Ouamane

Abstract Labyrinth weirs are commonly used to increase the capacity of existing spillways and provide more efficient spillways for new dams due to their high specific discharge capacity compared to the linear weir. In the present study, experimental and numerical investigation was conducted to improve the rectangular labyrinth weir performance. In this context, four configurations were tested to evaluate the influence of the entrance shape and alveoli width on its discharge capacity. The experimental models, three models of rectangular labyrinth weir with rounded entrance and one with flat entrance, were tested in rectangular channel conditions for inlet width to outlet width ratios (a/b) equal to 0.67, 1 and 1.5. The results indicate that the rounded entrance increases the weir efficiency by up to 5%. A ratio a/b equal to 1.5 leads to an 8 and 18% increase in the discharge capacity compared to a/b ratio equal to 1 and 0.67, respectively. In addition, a numerical simulation was conducted using the opensource CFD OpenFOAM to analyze and provide more information about the flow behavior over the tested models. A comparison between the experimental and numerical discharge coefficient was performed and good agreement was found (Mean Absolute Relative Error of 4–6%).


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


Author(s):  
Mingyang Liu ◽  
Jiabin Wang ◽  
Huifen Zhu ◽  
Sinisa Krajnovic ◽  
Guangjun Gao

A numerical simulation method based on the improved delayed detached eddy simulation coupled with a discrete phase model is used to study the influence of the snow on the performance of bogies of a high-speed train running in snowy weather. The snow particle trajectories, mass of snow packing on the bogie, and thickness of snow accumulation have been analyzed to investigate the flow mechanisms of snow accumulation on different parts of the bogies. The results show that the snow accumulation on the first bogie of the head vehicle is almost the same as that of the second bogie, but the total accumulated snow on the top side of the second bogie is more than 74% higher than that of the first bogie. Among all the components of the bogies, the motors were found to be strongly influenced by the snow accumulation. The underlying flow mechanisms responsible for the snow accumulations are discussed.


1999 ◽  
Vol 122 (4) ◽  
pp. 323-327
Author(s):  
G. Refai-Ahmed ◽  
M. M. Yovanovich

A numerical and experimental study of conduction heat transfer from low power magnetic components with gull wing leads was conducted to determine the effects of distributing the power loss between the core, the winding and the thermal underfill on the thermal resistance. The numerical study was conducted in the power loss ratio range of 0.5⩽PR⩽1.0, where the only active power loss was from the winding at PR=1. In addition, the effect of the thermal underfill material between the substrate and the lower surface of the magnetic package on the thermal performance of the magnetic device was also examined. For comparison, a test was conducted on a magnetic component at PR=1, without thermal underfill. This comparison revealed good agreement between the numerical and experimental results. Finally, a general model was proposed for conduction heat transfer from the surface mount power magnetic packages. The agreement between the model and the experimental results was within 8 percent. [S1043-7398(00)00704-0]


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


2011 ◽  
Vol 255-260 ◽  
pp. 1867-1872
Author(s):  
Jing Hua Qi ◽  
Zhen Nan Zhang ◽  
Xiu Run Ge

In order to model the mechanical behavior of joints efficiently, a thin-layer tri-node joint element is constructed. The stiffness matrix of the element is derived in the paper. For it shares the common nodes with the original tri-node triangle element, the tri-node joint element can be applied to model the crack propagation without remeshing or mesh adjustment. Another advantage is that the cracked body is meshed without consideration of its geometry integrity and existence of the joints or pre-existed crack in the procedure of mesh generation, and then the triangular element intersected by the crack or joint is automatically transformed into the tri-node joint element to represent pre-existed cracks. These make the numerical simulation of crack propagation highly convenient and efficient. After CZM is chosen to model the crack tip, the mixed- energy simple criterion is used to determine whether the element is intersected by the extended crack or not, the extended crack is located in the model. By modeling the marble plates with two edge cracks subjected to the uniaxial compressive loads, it is shown that the numerical results are in good agreement with the experimental results, which suggests that the present method is valid and feasible in modeling rock crack propagation.


2009 ◽  
Vol 13 (3) ◽  
pp. 59-67 ◽  
Author(s):  
Enrico Mollica ◽  
Eugenio Giacomazzi ◽  
Marco di

In this article a combustor burning hydrogen and air in mild regime is numerically studied by means of computational fluid dynamic simulations. All the numerical results show a good agreement with experimental data. It is seen that the flow configuration is characterized by strong exhaust gas recirculation with high air preheating temperature. As a consequence, the reaction zone is found to be characteristically broad and the temperature and concentrations fields are sufficiently homogeneous and uniform, leading to a strong abatement of nitric oxide emissions. It is also observed that the reduction of thermal gradients is achieved mainly through the extension of combustion in the whole volume of the combustion chamber, so that a flame front no longer exists ('flameless oxidation'). The effect of preheating, further dilution provided by inner recirculation and of radiation model for the present hydrogen/air mild burner are analyzed.


Sign in / Sign up

Export Citation Format

Share Document