POSSIBLE CHANGES OF CLIMATE CONDITIONS IN UKRAINE TO THE MIDDLE OF THE XXI CENTURY

Author(s):  
L.V. Malytska ◽  
V. O Balabukh

In Ukraine, as in the world, substantial climatic changes have happened throughout past decades. It is a fact that they are manifested in changing of parameters of the thermal regime, regimes of wind and humidity. It is expected that they will be observed also in future that will lead to aggravation of negative effects and risks due to climate change. That determines the relevance of the problem of forecasting such changes in future both globally and regionally. After all, knowledge of climate’s behavior in future is very important in the development of strategies, program and measures to adapt to climate change. The article is devoted to assessing spatio-temporal distribution main climatic indicators (air temperature, wind speed and relative humidity) in Ukraine, their variability and the probable values to the middle of the 21st century (2021-2050). Projection of changes in meteorological conditions was made for A1B scenario of SRES family using data of the regional climate model REMO and data from the hydrometeorological observation network of Ukraine (175 stations). Estimated data obtained from the European FP-6 ENSEMBLES project with a resolution of 25 km. For spatial distribution (mapping) we used open-source Geographic Information System QGIS, type of geographic coordinate system for project is WGS84. In the middle of the XXI century, if A1B scenario is released, it is expected a significant changes of climatic parameters regarding the 1981-2010 climatic norm: air temperature is rise by 1,5 °C, average wind speed is decrease by 5-8%, relative humidity in winter probably drop by 2%, but in summer it rises by 1,5%. The unidirectionality of the changes is characteristic only of air temperature, for wind speed and relative humidity the changes are in different directions. The intensity of changes is also not uniform across the country for all climatic parameters, has its regional and seasonal features. Statistical likelihood for most of highlighted changes for all climatic parameters is 66 % and more, the air temperature change is virtually certain (p-level <0.001).

2019 ◽  
Vol 7 (3) ◽  
pp. 663-679
Author(s):  
Sebastian G. Mutz ◽  
Todd A. Ehlers

Abstract. Detecting and explaining differences between palaeoclimates can provide valuable insights for Earth scientists investigating processes that are affected by climate change over geologic time. In this study, we describe and explain spatiotemporal patterns in palaeoclimate change that are relevant to Earth surface scientists. We apply a combination of multivariate cluster and discriminant analysis techniques to a set of high-resolution palaeoclimate simulations. The simulations were conducted with the ECHAM5 climate model and consistent setup. A pre-industrial (PI) climate simulation serves as the control experiment, which is compared to a suite of simulations of Late Cenozoic climates, namely a Mid-Holocene (MH, approximately 6.5 ka), Last Glacial Maximum (LGM, approximately 21 ka) and Pliocene (PLIO, approximately 3 Ma) climate. For each of the study regions (western South America, Europe, South Asia and southern Alaska), differences in climate are subjected to geographical clustering to identify dominant modes of climate change and their spatial extent for each time slice comparison (PI–MH, PI–LGM and PI–PLIO). The selection of climate variables for the cluster analysis is made on the basis of their relevance to Earth surface processes and includes 2 m air temperature, 2 m air temperature amplitude, consecutive freezing days, freeze–thaw days, maximum precipitation, consecutive wet days, consecutive dry days, zonal wind speed and meridional wind speed. We then apply a two-class multivariate discriminant analysis to simulation pairs PI–MH, PI–LGM and PI–PLIO to evaluate and explain the discriminability between climates within each of the anomaly clusters. Changes in ice cover create the most distinct and stable patterns of climate change, and create the best discriminability between climates in western Patagonia. The distinct nature of European palaeoclimates is statistically explained mostly by changes in 2 m air temperature (MH, LGM, PLIO), consecutive freezing days (LGM) and consecutive wet days (PLIO). These factors typically contribute 30 %–50 %, 10 %–40 % and 10 %–30 %, respectively, to climate discriminability. Finally, our results identify regions particularly prone to changes in precipitation-induced erosion and temperature-dependent physical weathering.


2019 ◽  
Author(s):  
Sebastian G. Mutz ◽  
Todd A. Ehlers

Abstract. Detecting and explaining differences between palaeoclimates can provide valuable insight into climatic tipping points and a useful framework of information for Earth scientists investigating processes that are affected by climate change over geological time. We apply a combination of multivariate cluster- and discriminant analysis techniques to a set of consistently set-up high-resolution palaeoclimate simulations conducted with the ECHAM5 climate model. A pre-industrial (PI) climate simulation serves as the control experiment, which is compared to a suite of simulations of Late Cenozoic climates, namely a Mid-Holocene (MH, ca. 6.5 ka), Last Glacial Maximum (LGM, ca. 21 ka) and Pliocene (PLIO, ca. 3 Ma) climate. For each of the study regions (Western South America, Europe and Himalaya–Tibet and South Alaska), differences in climate are subjected to geographical clustering to identify dominant modes of climate change and their spatial extent for each time slice comparison (PI-MH, PI-LGM and PI-PLIO). The selection of climate variables for the cluster analysis is made on the basis of their relevance to Earth surface processes and includes 2 m air temperature, 2 m air temperature amplitude, consecutive freezing days, freeze-thaw days, maximum precipitation, consecutive wet days, consecutive dry days, zonal wind speed and meridional wind speed. We then apply a two-class multivariate discriminant analysis to simulation pairs PI-MH, PI-LGM and PI-PLIO to evaluate and explain the discriminability between climates within each of the anomaly clusters. Changes in ice cover create the most distinct and stable patterns of climate change, and create the best discriminability between climates in western Patagonia. The distinct nature of European palaeoclimates is mostly explained by changes in 2 m air temperature (MH, LGM, PLIO), consecutive freezing days (LGM) and consecutive wet days (PLIO). These factors typically contribute 30 %–50 %, 10 %–40 % and 10 %–30 % respectively to climate discriminability. Finally, our results identify regions particularly prone to changes in precipitation-induced erosion and temperature-dependent physical weathering.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1170
Author(s):  
Ziyun Yin ◽  
Zhuotong Nan ◽  
Zetao Cao ◽  
Guofei Zhang

In the context of global climate change, the Qinghai-Tibetan plateau (QTP) has experienced unprecedented changes in its local climate. While general circulation models (GCM) are able to forecast global-scale future climate change trends, further work needs to be done to develop techniques to apply GCM-predicted trends at site scale to facilitate local ecohydrological response studies. Given the QTP’s unique altitude-controlled climate pattern, the applicability of the quantile–quantile (Q-Q) adjustment approach for this purpose remains largely unknown and warrants investigation. In this study, this approach was evaluated at 36 sites to ensure the results are representative of different climatic and surface conditions on the QTP. Considering the practical needs of QTP studies, the study aims to assess its capability for downscaling monthly GCM simulations of major variables onto the site scale, including precipitation, air temperature, wind speed, relative humidity, and air pressure, based on two GCMs. The calibrated projections at the sites were verified against the observations and compared with those from two commonly used adjustment methods—the quantile-mapping method and the delta method. The results show that the general trends of most variables considered are well adjusted at all sites, with a quantile pair of 25–75% for all the variables except precipitation where 10–90% is used. The calibrated results are generally close to the observed values, with the best performance in air pressure, followed by air temperature and relative humidity. The performance is relatively limited in adjusting wind speed and precipitation. The accuracies decline as the adjustment extends into the future; a wider adjustment window may help increase the performance for the variables subject to climate changes. It is found that the performance of the adjustment is generally independent of the locations and seasons, but is strongly determined by the quality of GCM simulations. The Q-Q adjustment works better for the meteorological variables with fewer fluctuations and daily extremes. Variables with more similarities in probability density functions between the observations and GCM simulations tend to perform better in adjustment. Generally, this approach outperforms the two peer methods with broader applicability and higher accuracies for most major variables.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Miftahuddin Miftahuddin ◽  
◽  
Ananda Pratama ◽  
Ichsan Setiawan ◽  
◽  
...  

The earth's climate is constantly changing, it's just that climate change in the past took place naturally. But until now, climate change has been very closely related to human activity, so the nature of the event has become faster and more drastic. Relative humidity is a parameter that can affect climate change in Indonesia, especially in Aceh Province. Aceh province is one of the provinces located on the island of Sumatra and directly facing the Indian Ocean. Thus, Aceh Province has a considerable impact on climate change. Changes in relative humidity will lead to changes in climate elements. There are several climate elements including air temperature, rainfall, sea surface temperature, wind speed, solar radiation, and dynamic altitude. One of the methods used to look at the relationship of each climate element is the Correlation method. The purpose of this study is to find out the relationship of each variable of the climate elements. The results showed that the relationship between variables X1 (air temperature) and X3 (sea surface temperature) had the highest closeness relationship with a positive correlation value of 0.77. The lowest closeness relationships are variables X2 (rainfall) and X4 (wind speed) with a negative weak correlation value of -0.01.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julián A. Velasco ◽  
Francisco Estrada ◽  
Oscar Calderón-Bustamante ◽  
Didier Swingedouw ◽  
Carolina Ureta ◽  
...  

AbstractImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems’ health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


2020 ◽  
Vol 27 (4) ◽  
pp. 98-102
Author(s):  
Haqqi Yasin ◽  
Luma Abdullah

Average daily data of solar radiation, relative humidity, wind speed and air temperature from 1980 to 2008 are used to estimate the daily reference evapotranspiration in the Mosul City, North of Iraq. ETo calculator software with the Penman Monteith method standardized by the Food and Agriculture Organization is used for calculations. Further, a nonlinear regression approach using SPSS Statistics is utilized to drive the daily reference evapotranspiration relationships in which ETo is function to one or more of the average daily air temperature, actual daily sunshine duration, measured wind speed at 2m height and relative humidity


2015 ◽  
Vol 8 ◽  
pp. 542
Author(s):  
José Edson Florentino de Morais ◽  
Thieres George Freire da Silva ◽  
Marcela Lúcia Barbosa ◽  
Wellington Jairo da Silva Diniz ◽  
Carlos André Alves de Souza ◽  
...  

O aumento na ocorrência de eventos climáticos extremos nas últimas décadas é uma forte evidência das mudanças climáticas. Em regiões Semiáridas, onde a pressão de desertificação tem se intensificado, são esperadas diminuição da disponibilidade de água e maior ocorrência de períodos seca, e, consequentemente, efeitos na resposta fisiológica das plantas. Assim, objetivou-se analisar os impactos dos cenários de mudanças climáticas sobre a duração do ciclo fenológico e a demanda de água do sorgo forrageiro e do feijão-caupi cultivados no Estado de Pernambuco. Foram utilizados os valores mensais da normal climatológica brilho solar, temperatura do ar, umidade relativa do ar e velocidade do vento de dez municípios. Considerou-se um aumento de 1,8°C (Cenário B2) e 4,0°C (Cenário A1F1) na temperatura do ar e um decréscimo de 5,0% dos valores absolutos de umidade relativa do ar, além do aumento de 22% na resistência estomática e de 4% no índice de área foliar. Com base nessas informações foram gerados três cenários: situação atual e projeções futuras para B2 e A1F1. Os resultados revelaram uma redução média de 11% (B2) e 20% (A1F1), e de 10% (B2) e 17% (A1F1) na duração do ciclo, e de 4% (B2) e 8% (A1F1), e 2% (B2) e 5% (A1F1) na demanda de água acumulada para o sorgo forrageiro e feijão-caupi, respectivamente. Conclui-se que a magnitude das reduções da duração do ciclo e a demanda de água simulada para as culturas do sorgo forrageiro e do feijão-caupi variaram espaço-temporalmente no Estado de Pernambuco com os cenários de mudanças climáticas.ABSTRACT The increase in the occurrence of extreme weather events in recent decades is a strong evidence of climate change. In semiarid regions, where the pressure of desertification has intensified, are expected to decrease in the availability of water and higher occurrence of drought periods, and, consequently, effects on physiological response of plants. Thus, the objective of analyzing the impacts of climate change scenarios on the duration of phenological cycle and water demand of forage sorghum and cowpea, grown in the State of Pernambuco. Monthly values were used normal climatological solar brightness, air temperature, relative humidity and wind speed of ten municipalities. It was considered an increase of 1.8° C (B2 Scenario) and 4.0° C (A1F1 Scenario) on air temperature and a decrease of 5.0% of the absolute values of relative humidity, in addition to the 22% increase in stomatal resistance and 4% in leaf area index. Based on this information were generated three scenarios: current situation and future projections for B2, A1F1. The results revealed an average reduction of 11% (B2) and 20% (A1F1), and 10% (B2) and 17% (A1F1) for the duration of the cycle, and 4% (B2) and 8% (A1F1), and 2% (B2) and 5% (A1F1) in accumulated water demand for forage sorghum and cowpea, respectively. It is concluded that the magnitude of the reductions in the duration of the cycle and the simulated water demand for crops of forage sorghum and cowpea ranged space-temporarily in the State of Pernambuco with climate change scenarios.


2018 ◽  
Vol 18 (9) ◽  
pp. 6121-6139 ◽  
Author(s):  
Fernando Iglesias-Suarez ◽  
Douglas E. Kinnison ◽  
Alexandru Rap ◽  
Amanda C. Maycock ◽  
Oliver Wild ◽  
...  

Abstract. Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm−2, (2) 163 ± 109 m Wm−2, and (3) 238 ± 113 m Wm−2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm−2 relative to year 2000 and 760 ± 230 m Wm−2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry–climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm−2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ∼ 50 % of the overall radiative forcing for the 2000–2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.


2019 ◽  
Vol 9 (7) ◽  
pp. 1389 ◽  
Author(s):  
Manuel Carretero-Ayuso ◽  
Alberto Moreno-Cansado ◽  
Justo García-Sanz-Calcedo

Climate conditions affect buildings’ performance and durability. The purpose of this paper is to examine the influence of climate conditions on roof deficiencies. 763 cases of such deficiencies were analyzed in this regard. Once the construction deficiencies were quantified, they were characterized from a climatological point of view and their ‘climate location segments’ were studied to obtain ‘ranges of concentration of anomalies’ according to the obtained percentage. A direct relation is shown to exist between the location of the building (latitude, situation, type of climate, precipitation, thermal demands, and average wind speed) and a greater or smaller concentration of deficiencies found in both flat and pitched buildings. It was also found that an annual average wind speed greater than 3 m/s increases the appearance of deficiencies in roofs. A higher prevalence of deficiencies was also found in those geographical zones with a thermal demand of 1800–2800 heating degree days or 450–700 cooling degree days. It was found that a higher percentage of construction deficiencies are concentrated in buildings located in the northern coastal climate segments of Spain. With these results, technicians will be able to take more appropriate precautions during both the building process and the use and maintenance phase.


Sign in / Sign up

Export Citation Format

Share Document